期刊文献+

基于LDU的视网膜OCT图像分层分割研究 被引量:2

Layer segmentation of retinal OCT images based on layer dense block U-Net (LDU)
下载PDF
导出
摘要 U-Net是近期流行的视网膜OCT图像分层分割方法,但是在具有复杂纹理信息的图像区域上会出现较大分割误差。提出一种带有层密集块的U型神经网络(LDU)。通过引入图像特征信息重用的层密集块,提取更有效的图像多尺度特征,从而提高视网膜OCT图像的分层分割精度。利用杜克大学公开的两层视网膜OCT数据库对LDU与传统U-Net方法进行对比分析。测试验证结果表明该方法可提升人眼特别是AMD病眼视网膜OCT图像分层分割的性能,提高视网膜各层定量化分析的准确性。 U-Net has been a popular method nowadays in the field of layer segmentation of retinal OCT images, but large segmentation errors still exist in image regions with complex texture information. In this paper, we propose a layer dense block-based U-type neural network(LDU) for this purpose. By introducing layer dense blocks for image feature information reuse, more effective multi-scale features of images are extracted, thus improving the accuracy of layered segmentation. The LDU is compared to the conventional U-Net method using the publicly available two-layer retinal OCT database from the Duke University. The test results show that this method could improve the performance of layered segmentation of retinal OCT images in human eyes, especially those with AMD, which consequently improved the accuracy of quantitative analysis for each retinal layer.
作者 谭泰铭 陈林江 蓝公仆 许景江 安林 黄燕平 TAN Tai-ming;CHEN Lin-jiang;LAN Gong-pu;XU Jing-jiang;AN Lin;HUANG Yan-ping(School of Mechatronic Engineering and Automation,Foshan University,Foshan 528000,Guangdong Province,China;Department of Ophthalmology,Nanfang Hospital,Southern Medical University,Guangzhou 510515,China;School of Physics and Optoelectronic Engineering,Foshan University,Foshan 528000,Guangdong Province,China;Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology,Foshan University,Foshan 528000,Guangdong Province,China;Innovation and Entrepreneurship Teams Project of Guangdong Pearl River Talents Program,Guangdong Weiren Meditech Co.,Ltd.,Foshan 528000,Guangdong Province,China)
出处 《信息技术》 2022年第10期31-40,共10页 Information Technology
基金 国家自然科学基金(61871130) 粤港澳智能微纳光电技术联合实验室(2020B1212030010) 广东省“珠江人才计划”引进创新创业团队(2019ZT08Y105) 佛山科学技术学院高层次人才科研启动项目(Gg07089)。
关键词 视网膜光学相干层析图像 分层分割 层密集块 卷积神经网络 最短路径搜索 retinal OCT images layer segmentation layer dense blocks Convolutional Neural Networks shortest path search
  • 相关文献

参考文献2

二级参考文献24

  • 1KAJIC V,ESMAEELPOUR M,POVAZAY B,et al.Automatedchoroidal segmentation of 1060 nm OCT in healthy and patho-logic eyes using a statistical mode[J].Biomed Opt Express,2012,3(1):86-103.
  • 2DUFOUR P A,CEKLIC L,ABDILLAHI H.Graph-based multisurface segmentation of OCT data using trained hard and soft constraints[J].IEEE Transactions on Medical Imaging,2013,32(3):531-542.
  • 3Kass M,Witkin A,Terzopoulos D.Snakes:active contour models[J].International Journal of Computer Vision,1987,1(4):321-331.
  • 4Canny J.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
  • 5Peng Y,Liu F,Liu S.A normalized local binary fitting model for image segmentation[C]//4th International Conference on Intelligent Networking and Collaborative Systems,Bucharest Romania,2012:77-80.
  • 6Peng B,Zhang L.A survey of graph theoretical approaches to image segmentation[J].Pattern Recognition,2013,46(3):1020-1038.
  • 7Precioso F,Barlaud M.Smoothing B-spline active contour for fast and robust image and video segmentation[C]//Proceedings of International Conference on Image Processing,Piscataway,NJ,2003:137-140.
  • 8Yezzi A,Kichenassamy S,Kumar A,et al.A geometric snake model for segmentation of medical imagery[J].IEEE Transactions on Medical Image,1997,16(2):199-209.
  • 9Zhang K,Zhang L,Song H,et al.Active contours with selective local or global segmentation:a new formulation and level set method[J].Image and Vision Computing,2010,28(4):668-676.
  • 10Xu C,Prince J.Snakes,shapes,and gradient vector flow[J].IEEE Transactions on Image Processing,1998,7(3):359-369.

共引文献1

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部