摘要
提出了一种恒温型自驱动太阳能空气集热器(CTSD-SAC),通过TRNSYS16.1进行建模和仿真研究。仿真基于4组秦皇岛市夏季典型气象参数进行,采用控制变量单因素分析方法,讨论了不同设定温度工况下CTSD-SAC的运行特性,分析了内置PV板(太阳能电池板)面积对CTSD-SAC性能的影响。结果表明:CTSD-SAC的流量降幅与设定温度呈非线性关系;太阳辐照度与室外温度均影响CTSD-SAC的出口流量,且室外温度的影响更显著,但是对系统的光热光电效率影响不明显,体现了CTSD-SAC运行性能的稳定性。分析表明PV板面积每增加0.1 m^(2),光热效率降低10%。仿真通过PID控制实现了集热器出口温度稳态误差小于2.11%,上升时间短于15 min。
In this paper,a constant temperature self-driven solar air collector(CTSD-SAC)is proposed,which is modeled and simulated by TRNSYS16.1.The simulation is based on four groups of typical meteorological parameters in Qinhuangdao city in summer.Using the single-factor analysis method of control variables,the operation characteristics of CTSD-SAC under different set temperature conditions are discussed,and the influence of the built-in PV board(solar panel)area on the performance of CTSD-SAC is analysed.The results show that there is a non-linear relationship between the flow rate decrease of CTSD-SAC and the set temperature.Both solar irradiance and outdoor temperature affect the outlet flow of CTSD-SAC,and the influence of outdoor temperature is more significant,but the effect on the photothermal photoelectrical efficiency of the system is not obvious,which reflects the stability of CTSD-SAC performance.The analysis shows that when the PV board area increases by 0.1 m^(2),the photothermal efficiency decreases by 10%.Through PID control,the steady-state error of collector outlet temperature is less than 2.11%,and the rising time is less than 15 min.
作者
胡建军
阮煜童
张寅
王丽莹
Hu Jianjun;Ruan Yutong;Zhang Yin;Wang Liying(Hebei Province Low-Carbon and Clean Building Heating Technology Innovation Center,Yansan University,Qinhuangdao;Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province,Yanshan University,Qinhuangdao;Qinhuangdao Vocational and Technical College,Qinhuangdao)
出处
《暖通空调》
2022年第11期142-147,112,共7页
Heating Ventilating & Air Conditioning
基金
河北省自然科学基金项目(编号:E2020203028)
中央引导地方科技发展资金项目(编号:226Z1902G)
河北省大学生创新创业训练计划项目(编号:S201910216047)。
关键词
太阳能集热器
温度控制
单因素分析
PID控制
光热效率
光电效率
自驱动
solar collector
temperature control
single factor analysis
PID control
photothermal efficiency
photoelectrical efficiency
self-driven