期刊文献+

基于EKF的初始状态自适应室内融合定位算法

Initial state adaptive indoor fusion location algorithm based on EKF
下载PDF
导出
摘要 针对扩展卡尔曼滤波(EKF)系统滤波初始值偏差会导致滤波结果发生偏离的问题,对融合定位系统的初始状态偏差进行了定量分析,并提出了一种初始状态自适应的EKF融合定位算法,通过对Wi-Fi定位初始多点协同卡尔曼滤波(KF)从而获得精准的初始位置与初始航向角,该方法能够良好适应不同的初始定位状态。同时提出了一种改进的EKF算法,以邻近状态RSSI欧氏距离作为度量动态调整EKF系统参数,以降低Wi-Fi数据波动对EKF系统所造成的影响。实验表明:系统可以获得精确的初始状态,能够在4步内收敛到状态的真实值,该方法能很好的降低Wi-Fi定位的波动与PDR的累积误差,从而提高定位精度,在相同条件下,该融合定位算法的平均误差为0.97 m,相较于最新的EKF算法,能够提高17.2%的定位精度。 The deviation of initial value of extended Kalman filtering(EKF)system may result in distinct difference of the state filtering.Therefore, the fusion of positioning system has carried on the quantitative analysis of the initial state problem, and an EKF fusion algorithm with adaptive initial state is proposed.Through the initial Wi-Fi location points with Kalman filter to obtain the accurate initial position and heading angle, the method can well adapt to different initial state.Finally, an improved EKF algorithm based on dynamic system parameters measured by the received signal strength indication(RSSI)Euclidean distance of adjacent states is designed to reduce the influence of Wi-Fi fluctuation on the EKF system.Experimental verification shows that the system can obtain accurate initial state and quickly converge to the true value in four steps.The result can well reduce the fluctuation of Wi-Fi positioning and the accumulated error of PDR,and improve positioning accuracy.Under the same conditions, the average error of the fusion positioning algorithm is 0.97 m, which can improve the positioning precision by 17.2 % compared with the latest EKF algorithm.
作者 胡文强 胡建鹏 吴飞 陆雯霞 HU Wenqiang;HU Jianpeng;WU Fei;LU Wenxia(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《传感器与微系统》 CSCD 北大核心 2022年第11期147-151,共5页 Transducer and Microsystem Technologies
基金 国家自然科学基金青年科学基金资助项目(61902237) 上海市科技学术委员会重点项目(18511101600) 上海市科委青年科技英才“扬帆计划”资助项目(19YF1418200)。
关键词 室内定位 Wi-Fi定位 行人航位推算 扩展卡尔曼滤波 融合定位 indoor localization Wi-Fi location pedestrian dead reckoning(PDR) extended Kalman filtering(EKF) fusion location
  • 相关文献

参考文献7

二级参考文献41

  • 1吴秋平,万德钧,王庆.车辆组合导航系统中的滤波新算法[J].中国惯性技术学报,1999,7(2):23-25. 被引量:3
  • 2房建成,申功勋,万德钧.一种自适应联合卡尔曼滤波器及其在车载GPS/DR组合导航系统中的应用研究[J].中国惯性技术学报,1998,6(4):2-7. 被引量:19
  • 3陈国良,张言哲,杨洲.一种基于手机传感器自相关分析的计步器实现方法[J].中国惯性技术学报,2014,12(6):794-798. 被引量:45
  • 4ZHANG S, XIONG Y, MA J, et al. Indoor location based on independent sensors and WIFI [C]// International Conference on Computer Science and Network Technology. 2011: 2640-2643.
  • 5JIMENEZ R A R, SECO G F, PRIETO H I C, et al. Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements [J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(1): 178-189.
  • 6PRATAMA A R, WIDYAWAN H R. Smartphone-based pedestrian dead reckoning as an indoor positioning system [C]//International Conference on System Engineering and Technology. 2012: 1-6.
  • 7WANG J S, LIN C W, YANG Y T C, et al. Walking pattern classification and walking dis- tance estimation algorithms using gait phase information [J]. IEEE Transactions on Biomedical Engineering, 2012, 59(10): 2884-2892.
  • 8ZHANG R, BANNOURA A, HOFLINGER F, et al. Indoor localization using a smart phone [C]// Sensors Applications Symposium. 2013: 38-42.
  • 9SHIN B, LEE J H, LEE H, et al. Indoor 3D pedestrian tracking algorithm based on PDR using smartphone [C]//International Conference on Control, Automation and Systems. 2012: 1442- 1445.
  • 10CHEN W, CHEN R Z, CHEN Y W, et al. An effective pedestrian dead reckoning algorithm using a unified heading error model [C]//Position Location and Navigation Symposium. 2010: 340-347.

共引文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部