摘要
以CO_(2)跨临界循环冷热联供系统为研究对象,通过理论计算分析了传热窄点温差约束下系统供热温度、供冷温度、制热系数(COP_(h))和制冷系数(COP_(c))随压缩机排气压强、气体冷却器出口工质温度和蒸发温度的变化规律。结果表明:供热温度随压缩机排气压强和气体冷却器出口工质温度的提高而升高,随蒸发温度的提高而降低;供冷温度只随蒸发温度变化;COP_(h)和COP_(c)随气体冷却器出口工质温度的提高而减小,随蒸发温度的提高而增大;当气体冷却器出口工质温度为30~40℃时,随压缩机排气压强的增大,COP减小,当气体冷却器出口工质温度为45℃时,COP先增大后减小;在考察工况下,当蒸发温度为-25℃、气体冷却器出口温度为45℃时,循环系统在压缩机排气压强为14 MPa可以达到最大供热温度120.65℃、最低供冷温度-15℃,此时系统COP为2.94。
This paper carries out the theoretical analysis and calculation to the CO_(2) transcritical cycle combined cooling and heating system,studies the variation rules of heating temperature,cooling temperature,heating coefficient COP_(h) and cooling coefficient COP_(c) of system with compressor discharge pressure,working fluid temperature at the outlet of gas cooler and vaporizer temperature under the temperature difference restrain of heat transfer pinch point.The results show that the heating temperature increases with the increase of the compressor discharge pressure and the working fluid temperature at the outlet of the gas cooler,and decreases with the increase of the vaporizer temperature.And the cooling temperature only changes with the vaporizer temperature.COP_(h) and COP_(c) decrease with the increase of working fluid temperature at the outlet of gas cooler and increase with the increase of vaporizer temperature.With the increase of compressor discharge pressure,COP decreases when the working medium temperature at the outlet of the gas cooler is 30℃to 40℃,and increases first and then decreases when the working medium temperature at the outlet of the gas cooler is 45℃.Under the investigation condition,when the vaporizer temperature is-25℃,working fluid temperature at the outlet of gas cooler is 45℃and the compressor discharge pressure is 14 MPa,the cycle system can reach the maximum heating temperature of 120.65℃and the minimum cooling temperature of-15℃,and at this time,the COP of the system is 2.94.
作者
郭东奇
刘冲
吕一帆
潘利生
GUO Dong-qi;LIU Chong;LYU Yi-fan;PAN Li-sheng(China Energy Engineering Group Shanxi Electric Power Engineering Co.,Ltd,Taiyuan,China,030001;School of Environment and Energy Engineering,Beijing University of Civil Engineering and Architecture,Beijing,China,100044;State Key Laboratory of High-temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing,China,100190)
出处
《热能动力工程》
CAS
CSCD
北大核心
2022年第10期35-40,59,共7页
Journal of Engineering for Thermal Energy and Power
基金
北京市自然科学基金(3192042)
中国能源建设集团山西省电力勘测设计院有限公司科技项目(14-K2021-27-N01)。