期刊文献+

固体氧化物燃料电池的神经模糊控制策略研究 被引量:2

Study on Neural Fuzzy Control Strategy of Solid Oxide Fuel Cell
原文传递
导出
摘要 固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)具有多输入多输出、强耦合的特点,为了使其输出电压稳定设计了高效控制器,采用神经模糊控制方法对其输出电压进行控制。通过机理分析和实验数据拟合方法分别建立SOFC的机理模型和神经网络模型,在此基础上采用模糊控制策略对SOFC的输出电压进行控制,并应用神经模糊控制方法进一步提高了控制精度。通过MATLAB/Simulink仿真实验发现,SOFC神经网络模型得到的预测电压与实际电压之间的误差小于0.008 V,较其机理模型更加准确,所提出的控制策略能有效控制SOFC的输出电压。 Solid oxide fuel cell(SOFC)has the characteristics of multi-input,multi-output and strong coupling.In order to design an efficient controller to stabilize its output voltage,this paper uses neural fuzzy control method to control its output voltage.The SOFC mechanism model and neural network model are established through mechanism analysis and experimental data fitting method respectively.On this basis,fuzzy control strategy is adopted to control the output voltage of SOFC,and neural fuzzy control method is applied to further improve the control accuracy.Through MATLAB/Simulink simulation experiments,it is found that the error between the actual voltage and the predicted voltage of the SOFC neural network model is less than 0.008 V,which is more accurate than its mechanism model.The proposed control strategy can effectively control the output voltage of the SOFC.
作者 王倩如 王彩霞 顾吉鹏 WANG Qian-ru;WANG Cai-xia;GU Ji-peng(College of Electrical Engineering,Northwest Minzu University,Lanzhou,China,730000;College of Information Engineering,Zhejiang University of Technology,Hangzhou,China,310000)
出处 《热能动力工程》 CAS CSCD 北大核心 2022年第10期198-206,共9页 Journal of Engineering for Thermal Energy and Power
基金 西北民族大学研究生科研创新项目(Yxm2021090) 西北民族大学中央高校基本科研业务费项目(No.31920190067)。
关键词 固体氧化物燃料电池 SOFC神经网络模型 模糊控制 神经模糊控制 solid oxide fuel cell SOFC neural network model fuzzy control neural fuzzy control
  • 相关文献

参考文献10

二级参考文献94

  • 1卢俊彪,张中太,唐子龙.固体氧化物燃料电池的研究进展[J].稀有金属材料与工程,2005,34(8):1177-1180. 被引量:38
  • 2Hall D J, Colclaser R G. Transient modeling and simulation of a tubular solid oxide fuel cell[J]. IEEE Transactions Energy Converse, 1999, 14(3): 749-753.
  • 3Padulles J, Ault G W, Mcdonald J R. An integrated SOFC plant dynamic model for power system simulation[J]. Journal of Power Sources, 2000, 86(1/2): 495-500.
  • 4Nagata S, Momma A, Kato T, et al. Numerical analysis of output characteristics of tubular SOFC with internal reformer[J]. Journal of Power Sources, 2001, 101(1): 60-71.
  • 5Zhu Y, Tomsovic K. Development of models for analyzing the load following performance of microturbines and fuel cells[J]. Electric Power SystemsResearch, 2002, 62(1): 1-11.
  • 6Kenney B, Karan K. Impact of nonuniform potential in SOFC composite cathodes on the determination of electrochemical kinetic parameters[J]. Journal of the Electrochemical Society, 2006, 153(6): 1172-1180.
  • 7Lazzaretto A, Toffolo A, Zanon F. Parameter setting for a tubular SOFC simulation model[J]. Journal of Energy Resources Technology, 2004, 126(1): 40-46.
  • 8Noren D A, Hoffman M A. Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models[J]. Journal of Power Sources, 2005(152): 175-181.
  • 9Zhao F, Virkar A V. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters[J]. Journal of Power Sources, 2005, 141(1): 79-95.
  • 10Sedghisigarchi K, Feliachi A. Dynamic and transient analysis of power distribution systems with fuel cells-part Ⅰ: fuel cell dynamic model[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 423-428.

共引文献72

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部