期刊文献+

数据与模型混合驱动的区域综合能源系统双层优化调度决策方法 被引量:8

Hybrid Data-driven and Model-driven Bi-level Optimal Scheduling Decision for Regional Integrated Energy Systems
下载PDF
导出
摘要 在高比例可再生能源接入以及多种能源耦合网络快速发展的背景下,基于模型驱动的传统调度方法将难以满足区域综合能源系统实时优化调度决策的速度需求。因此,研究具有高智能性和快速决策能力的智能调度决策方法具有重要的意义。该文提出了一种数据与模型混合驱动的区域综合能源双层优化调度决策方法。上层使用混合整数线性规划(mix integer linear programming,MILP)求解得到日前调度计划,为日内滚动优化提供参考,下层将卷积神经网络(convolutional neural network,CNN)与门控循环单元(gated recurrent unit,GRU)相结合进行日内滚动优化决策,使用自适应功率修正模型对其输出进行微调得到精确解。最后,通过算例分析验证了本文所提方法的有效性。 Under the background of the high percentage renewable energy access and the rapid development of multiple energy coupling networks,it is difficult for a single model-driven methodology to satisfy the speed requirements of the real-time optimal scheduling decisions for the integrated regional energy systems.Therefore,it is significant to study the scheduling decision methods with high intelligence and fast decision-making capabilities.In this paper,a data-and model-driven method for a bi-level optimal scheduling of the regional integrated energy systems is proposed.On the upper layer,the mixed integer linear programming(MILP)is used to obtain a day-ahead scheduling plan which provides reference values for the within-day rolling optimization.The lower layer combines the Convolutional Neural Network(CNN)with the Gated Recurrent Unit(GRU)for the within-day rolling optimization decision making.Using the adaptive power correction model it finely tunes its outputs to obtain the accurate solution.Finally,the effectiveness of the method proposed in this paper is demonstrated by means of example analysis.
作者 王志杨 张靖 何宇 古庭赟 李博文 WANG Zhiyang;ZHANG Jing;HE Yu;GU Tingyun;LI Bowen(College of Electrical Engineering,Guizhou University,Guiyang 550025,Guizhou Province,China;Electric Power Research Institute of Guizhou Power Grid Co.,Ltd.,Guiyang 550002,Guizhou Province,China)
出处 《电网技术》 EI CSCD 北大核心 2022年第10期3797-3809,共13页 Power System Technology
基金 国家自然科学基金项目(51867005) 黔科合支撑[2022]一般013 黔科合平台人才-GCC[2022]016-1 黔教技[2022]043号。
关键词 深度学习 区域综合能源系统 数据与模型混合驱动 人工智能 deep learning regional integrated energy system hybrid data-driven and model-driven artificial intelligence
  • 相关文献

参考文献22

二级参考文献354

共引文献2017

同被引文献159

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部