期刊文献+

基于DeepLabV3+的骨料图像自动分割算法 被引量:3

Automatic segmentation algorithm of aggregate image based on DeepLabV3+
下载PDF
导出
摘要 为实现水利工程施工中骨料粒径大小的快速准确查验,提出了一种基于DeepLabV3+的骨料图像自动分割算法,收集了150张不同条件下的骨料图片,在原始DeepLabV3+网络的基础上通过对比试验进行网络优化,并利用优化后的网络训练骨料图像自动分割模型。优化后的DeepLabV3+网络以MobileNetV2为骨干网络、以Swish+BN函数为激活函数,并进行权重优化。试验结果表明,训练得到的骨料图像自动分割模型的骨料交并比为0.8615,比原始网络训练模型高0.0118,比U-Net、FCN训练模型分别高0.0646和0.0886,基于DeepLabV3+的骨料图像自动分割模型能基本满足精度要求。 In order to realize the rapid and accurate inspection of aggregate particle size in hydraulic engineering construction,an automatic aggregate image segmentation algorithm based on DeepLabV3+was proposed.150 aggregate images under different conditions were collected,and the network was optimized based on the original DeepLabV3+network through contrast experiment.Then the optimized network was used to train the automatic aggregate image segmentation model.The MobileNetV2 is the backbone network of the improved DeepLabV3+network,and the Swish+BN function is the activation function.After weight optimization,the aggregate’s intersection over union(IoU)is 0.8615,which is 0.0118 higher than the original network training model,and 0.0646 and 0.0886 higher than that of U-Net and FCN training models.The automatic segmentation accuracy of aggregate image based on the improved DeepLabV3+can basically meet the accuracy requirements.
作者 张社荣 欧阳乐颖 王超 王枭华 ZHANG Sherong;OUYANG Leying;WANG Chao;WANG Xiaohua(State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300350,China)
出处 《水利水电科技进展》 CSCD 北大核心 2022年第6期28-32,97,共6页 Advances in Science and Technology of Water Resources
基金 国家自然科学基金面上项目(51979188) 华能集团总部科技项目(HNKJ21-H33)。
关键词 骨料粒径 图像分割 深度学习 语义分割 DeepLabV3+ aggregate particle size image segmentation deep learning semantic segmentation DeepLabV3+
  • 相关文献

参考文献8

二级参考文献58

  • 1陈波,张华,汪双,王皓冉,刘昭伟,李永龙,谢辉.基于全卷积神经网络的坝面裂纹检测方法研究[J].水力发电学报,2020(7):52-60. 被引量:25
  • 2陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2168-2173. 被引量:68
  • 3朱伯芳.混凝土坝温度控制与防止裂缝的现状与展望[J].水利学报,2006,37(12):1424-1432. 被引量:102
  • 4刘海华,陈心浩,高智勇,谢长生.基于形态学操作和模糊聚类技术的超声图像分割[J].电子学报,2007,35(7):1306-1312. 被引量:7
  • 5Zhang M H, Gjvorv O E. Mechanical properties of high-strength lightweight conclte[ J]. A CI Materials Journal, 1991,88(3).
  • 6Yang C C, Huang R. Approximate strength of lightweight aggregate using micromechanics method[ J]. Advanced Cement Based Materials, 1998, 7(3) : 133-138.
  • 7Ke Y, Beaucour A L, Ortola S, et al. Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete[ J ]. Construction and Building Materials, 2009, 23 (8) : 2821-2828.
  • 8Mora C F, Kwan A K H. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing[ J]. Cement and Concrete Research, 2000, 30(3) : 351-358.
  • 9Chen B, Liu J. Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability [ J ]. Cement and Concrete Research, 2005, 35(5): 913-917.
  • 10Bogas J A, Gomes A. A simple mix design method for structural lightweight aggregate concrete [ J ]. Materials and Stnwtures, 2013, 46 ( 11 ) : 1919-1932.

共引文献82

同被引文献29

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部