期刊文献+

基于手机信令数据的用户位置预测方法研究 被引量:1

Research on User Location Prediction Method Based on Cell Phone Signaling Data
下载PDF
导出
摘要 手机信令数据记录了用户的移动行为,为位置预测提供数据来源。为了发挥手机信令数据在位置预测中的优势,本文构建了强化位置间前后关联的LSTM预测方法。首先,本文提出一种循环迭代的数据清洗方法,可大幅减少冗余位置信息,为提取停留点作准备;其次,以基站小区为单位提取停留点,并结合背景地理信息获取用户含有语义特征的轨迹;然后采用矩阵降维的方法将稀疏的one-hot位置编码转化为位置嵌入向量,将位置间的语义关联隐含到位置嵌入向量中,与下游拥有预测任务的LSTM网络组成基于LSTM的位置预测模型。最后的实验证明该模型对手机信令数据具有良好的预测效果。 Cell phone signaling data records the user’s movement behavior and provides a data source for location prediction.In order to exploit the advantages of cell phone signaling data in location prediction to the full,in this paper,a LSTM location prediction method was established which can strength the relation between former and latter location. Firstly,a cyclic iterative data cleaning method was proposed,which could greatly reduce redundant location information and make preparations for the extraction of stop points. Secondly,the base station cell as the unit was took to extract the stop point;and then the background geographic information was combined to obtain semantic track. Then,the matrix dimensionality reduction method was used to convert the sparse one-hot position codes into position embedding vectors,and the semantic association between the positions was implicitly embedded in the position embedding vectors. The above contents,being combined with the downstream LSTM network which own prediction task,a LSTM-based position prediction model was constituted. The final experiments show that the model has a satisfactory prediction effect on mobile phone signaling data.
作者 吴雨佳 尹伟石 孟品超 WU Yujia;YIN Weishi;Meng Pinchao(School of Mathematics,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2022年第5期130-137,共8页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金(11671170)。
关键词 手机信令数据 LSTM神经网络 位置预测 矩阵降维 cell phone signaling data LSTM neural network position prediction matrix dimensionality reduction
  • 相关文献

参考文献3

二级参考文献25

  • 1李莉,段锦,顾玲嘉.一种动态目标检测与跟踪的方法研究[J].长春理工大学学报(自然科学版),2005,28(3):1-3. 被引量:5
  • 2李木勇,冯进良,唐勇,韦宏强,于明飞,王玉明.基于序列图像中运动小目标检测[J].长春理工大学学报(自然科学版),2007,30(2):22-25. 被引量:6
  • 3Jeung H, Liu Q, Shen H, et al. A hybrid prediction model for moving objects [C] //Proc of the 24th Int Conf on Data Engineering. Cancfin: ICDE, 2008:70-79.
  • 4Alvares I.O, Bogorny V, Palma A, et al. Towards semantic trajectory knowledge discovery, PR07001 [R]. Hasselt, Belgium: Institute of Information, 2007.
  • 5Jensen C S, Lin D, Ooi B. Query and update efficient b--- tree based indexing of moving objects [C] //Proc of the 13th Int Conf on Very Large Data Bases, San Francisco: Morgan Kaufmann, 2004: 768-779.
  • 6Saltenis S, Jensen C, Leutenegger S, et al. Indexing the positions of continuously moving objects [C] //Proc of the 2000 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2000:331-342.
  • 7Tao Y, Papadias D, Sun J, et al. The tpr*-tree: An optimized spatiotemporal access method for predictive queries [C] //Proc of the 29th Int Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2003:790-801.
  • 8Tao Y, Faloutsos C, Papadias D, et al. Prediction and indexing of moving objects with unknown motion patterns [C] //Proc of the 2004 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2004:611-622.
  • 9Aggarwal C C, Agrawal D. On nearest neighbor indexing of nonlinear trajectories [C] //Proc of the twenty-second ACM SIGMOD-SIGACT-SIGART Syrup on Principles of Da'tabase Systems. New York: ACM, 2003: 252-259.
  • 10Rabiner L. A tu',orial on hidden Markov models and selected applications in speech recognition [J]. Proceeding of the IEEE, 1989, 77(2): 257-286.

共引文献24

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部