期刊文献+

基于YOLOv5s-T和RGB-D相机的螺栓检测与定位系统 被引量:6

Bolt Detection and Positioning System Based on YOLOv5s-T and RGB-D Camera
下载PDF
导出
摘要 机器人替代人工紧固角钢塔螺栓是解决高空作业安全问题的途径之一.针对角钢塔螺栓紧固机器人的作业需求,提出了一种基于神经网络和RGB-D相机的角钢塔主材螺栓检测与定位系统,将轻量化的YOLOv5s-T网络应用于英特尔®实感™深度摄像头D435i采集的图像,实现了角钢塔主材螺栓的实时检测、三维定位及重新排序等功能.经实验验证,YOLOv5s-T在基本不降低均值平均精度(mean average precision,mAP)的情况下,推理速度提高约31%;用RGB-D相机测得的三维坐标计算相邻螺栓间距,平均误差小于1 mm.对主材螺栓排序算法进行验证,RGB-D相机正对螺栓组模板时,模板的正确排序率不低于95%,可快速引导6自由度机械臂末端到达螺栓紧固点. Replacing manual works with robots is a feasible solution for solving the safety problem of fastening bolts on the angle steel tower.In order to meet the operating requirements of the angle steel tower bolt fastening robot,a detecting and positioning system was proposed based on neural network and RGB-D camera for the main bolts of the angle steel tower.Applying the lightweight YOLOv5s-T network to the image of the Intel®RealSense™depth camera D435i,the system was used to realize real-time detection,three-dimensional positioning and reordering the main bolts of the angle steel tower.Experiments show that YOLOv5s-T can improve the inference speed of the original algorithm by about 31%without reducing mAP(mean average precision)basically.Using three-dimensional coordinates measured by the RGB-D camera to calculate the distance between adjacent bolts,the average distance error is less than 1 mm.When the RGB-D camera is facing the bolt group template,the correct sorting rate of the template is above 95%.It can guide the end-effector of the 6-dof manipulator toward the target bolt within a short time.
作者 王向周 杨敏巍 郑戍华 梅云鹏 WANG Xiangzhou;YANG Minwei;ZHENG Shuhua;MEI Yunpeng(School of Automation,Beijing Institute of Technology,Beijing 100081,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2022年第11期1159-1166,共8页 Transactions of Beijing Institute of Technology
基金 国家电网有限公司总部科技项目“角钢塔塔身螺栓紧固机器人研究”资助(5200-2020036147A-0-0-00)。
关键词 YOLOv5s-T 螺栓检测 三维定位 排序 YOLOv5s-T bolt detection three-dimensional positioning ordering
  • 相关文献

参考文献3

二级参考文献18

  • 1唐健隆,梁自泽,蔡丽,侯增广,左岐,叶文波.基于状态机的巡线机器人控制系统设计[J].微计算机信息,2008,24(2):247-249. 被引量:4
  • 2李恩,梁自泽,谭民.基于规则库的巡线机器人自主越障动作规划[J].机器人,2005,27(5):400-405. 被引量:20
  • 3Katrasnik J, Pernus F, Likar B. A survey of mobile robots for distribution power line inspection[J]. IEEE Transactions on Power Delivery, 2010, 25(1): 485-493.
  • 4Toussaint K, Pouliot N, Montambault S. Transmission line maintenance robots capable of crossing obstacles: State of the art review and challenges ahead[J]. Journal of Field Robotics, 2009, 26(5): 477-499.
  • 5Jiang X, Xia Y, Hu J, et al. An S-transform and support vector machine (SVM)-based online method for diagnosing broken strands in transmission lines[J]. Energies, 2011, 4(9): 1278- 1300.
  • 6Haag T, Beadle B M, Sprenger H, et al. Wave-based defect detection and interwire friction modeling for overhead transmission lines[J]. Archive of Applied Mechanics, 2009, 79(6/7): 517-528.
  • 7Shoureshi R A, Lim S W, Dolev E, et al. Electro-magneticacoustic transducers for automatic monitoring and health assessment of transmission lines[J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126(7): 303-308.
  • 8Hatsukade Y, Miyazaki A, Matsuura H, et al. Study of inspection of wire breakage in aluminum transmission line using SQUID[C]// International Conference on Advanced Nondestructive Evaluation. Kidlington, UK: Elsevier Science, 2009: 170-173.
  • 9Fu S, Li W, Zhang Y, et al. Structure-constrained obstacles recognition for power transmission line inspection robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2006: 3363-3368.
  • 10Li W H, Tajbakhsh A, Rathbone C, et al. Image processing to automate condition assessment of overhead line components[C]//International Conference on Applied Robotics for the Power Industry. Piscataway, USA: IEEE, 2010: 1-6.

共引文献37

同被引文献56

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部