期刊文献+

影响最大化问题中基于K-truss的投票改进算法

Improved Voting Algorithm Based on K-truss for Influence Maximization Problem
下载PDF
导出
摘要 在社交网络的影响最大化(IM)问题中,近似算法通过大量的Monte-Carlo模拟计算节点集的影响范围,导致时间复杂度提高,而多数启发式算法在具有不同拓扑结构的图上存在稳定性较差的问题。提出基于K-truss的改进投票算法TrussVote。在投票阶段,通过引入K-truss的相关理论及算法定义节点的有效投票能力,用于表示节点对其不同邻居的投票倾向,同时在计算得票分数时考虑边的传播概率,提高解决IM问题的效率。在每轮投票结束后,将得票分数最高的节点选为种子节点。在更新阶段,结合节点间的相似性指标定义衰减因子,以有效区分邻居节点投票能力的弱化程度。此外,基于IC模型下的原始传播结果,提出传播差异作为传播范围的等价分析指标。在不同规模真实网络数据集上的实验结果表明,相比RNR、VoteRank++等算法,该算法不仅能有效降低时间复杂度,而且可在最短的时间内感染更多的节点,具有广泛的影响范围。 In the Influence Maximization(IM)problem of social networks,approximation algorithms are used to calculate the impact range of node sets via a significant amount of Monte-Carlo simulations,thus resulting in an increase in time complexity.Most heuristic algorithms exhibit unsatisfactory stability on graphs with different topological structures.This study proposes an improved voting algorithm,TrussVote,which is based on K-truss.In the voting stage,the effective voting ability of a node is defined by introducing the relevant theory and algorithm of K-truss,which is used to represent the voting tendency of a node to its different neighbors.Additionally,the propagation probability of edges is considered when calculating the voting score to improve the efficiency of the algorithm in solving IM problems.After each round of voting,the node with the highest voting score is selected as the seed node.In the update phase,the attenuation factor is defined based on the similarity index between nodes to effectively distinguish the weakening degree of neighboring nodes’ voting ability.In addition,based on the original propagation results under the IC model,the Diffusion Difference(DD)is proposed as an analysis index equivalent to the propagation range.Experimental results on real network datasets of different scales show that compared with RNR,VoteRank++,and other algorithms,the proposed algorithm not only effectively reduces the time complexity,but also infects more nodes in the shortest duration and has a wider range of influence.
作者 孙飞翔 陈卫东 林天森 SUN Feixiang;CHEN Weidong;LIN Tiansen(School of Computer Science,South China Normal University,Guangzhou 510631,China)
出处 《计算机工程》 CAS CSCD 北大核心 2022年第11期291-298,共8页 Computer Engineering
基金 国家自然科学基金(61370003)。
关键词 社交网络 影响最大化 投票算法 K-truss分解 IC模型 SIR模型 social network Influence Maximization(IM) voting algorithm K-truss decomposition IC model SIR model
  • 相关文献

参考文献1

二级参考文献26

  • 1Domingos P, Richardson M. Mining the network value of customers//Proceedings of the 7th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001: 57-66.
  • 2Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing//Proeeedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002:61-70.
  • 3Kempe D, Kleinberg J, Tardos L. Maximizing the spread of influence through a social network//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2003: 137-146.
  • 4Leskovec J, Krause A, Guestrin C, et al. Cost-effective out- break detection in networks//Proeeedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007:420-429.
  • 5Chen Wei, Wang Ya-Jun, Yang Si-Yu. Efficient influence maximization in social networks//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 199-207.
  • 6Estavez Pablo A, Vera P, Saito K. Selecting the most influential nodes in social networks//Proceedings of the 2007 International Joint Conference on Neural Networks. Orlando, USA, 2007:2397-2402.
  • 7Chen Wei, Wang Chi, Wang Ya-Jun. Scalable influence maximization for prevalent viral marketing in large-scale social networks//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2010:1029-1038.
  • 8Chen Wei, Yuan Yi-Fei, Zhang Li. Scalable influence maxi- mization in social networks under the linear threshold model //Proceedings of the 10th IEEE International Conference on Data Mining. Sydney, Australia, 2010:88-97.
  • 9Chen Wei, Collins A, Cummings R, et al. Influence maximi- zation in social networks when negative opinions may emerge and propagate//Proceedings of the llth SIAM International Conference on Data Mining. Mesa, USA, 2011:379 -390.
  • 10Narayanam R, Narahari Y. A shapley value-based approach to discover influential nodes in social networks. IEEE Transactions on Automation Science and Engineering, 2010, 8(1): 130- 147.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部