期刊文献+

基于AdaBoost改进随机森林和SVM的极化SAR地物分类 被引量:5

Polarimetric SAR image classification based on AdaBoost improved random forest and SVM
下载PDF
导出
摘要 为提升极化合成孔径雷达(SAR)地物分类精度,提出一种基于AdaBoost改进型随机森林和支持向量机(SVM)结合的二级分类结构。首先将AdaBoost改进型随机森林作为初级分类器,该分类器能根据决策树的分类能力赋予权重,分类能力越强则权重越高,从而提升初级分类精度。初级分类器还能评估输入特征的重要性,获得重要性排名。根据重要性排名进行特征筛选,用筛选后的特征训练SVM分类器,获取二级分类结果。最后利用邻域投票法将两级分类结果融合。AIRSAR极化数据对比实验表明,该分类结构可有效提升极化SAR地物分类精度。 In order to improve the classification accuracy of polarimetric synthetic aperture radar(SAR)images,a two-level classification structure based on AdaBoost improved random forest(RF)and support vector machine(SVM)is proposed.Firstly,the AdaBoost improved RF(ADA_RF)is taken as the first-level classifier,which can assign weights according to the classification abilities of the decision trees.ADA_RF assigns high weights to strong decision trees.The first-level classifier can also assess the importance of input features and compute a ranking list.Feature selection can be conducted according to the list.The SVM classifier is trained with the selected features to predict the second-level classification result.Finally,the neighborhood voting method is used to fuse the results.The comparison experiments of AIRSAR polarization data shows that the classification structure can effectively improve the classification accuracy of polarimetric SAR images.
作者 张政 李世强 ZHANG Zheng;LI Shiqiang(Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100190,China;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2022年第6期776-782,共7页 Journal of University of Chinese Academy of Sciences
基金 国家自然科学基金(61901442)资助。
关键词 极化SAR ADABOOST 改进随机森林 二级分类器 地物分类 polarimetric SAR AdaBoost improved RF two-level classifier terrain classification
  • 相关文献

参考文献4

二级参考文献36

  • 1栾丽华,吉根林.决策树分类技术研究[J].计算机工程,2004,30(9):94-96. 被引量:112
  • 2罗来平,宫辉力,赵文吉,刘先林.遥感图像决策树分类器研究与实现[J].遥感信息,2006,28(3):13-15. 被引量:10
  • 3Vapnik V N. An overview of statistical learning theory[ J]. IEEE Transactions on Neural Networks, 1999, 10(5) : 988-999.
  • 4Tong S, Koller D. Support vector machine active learning with applications to text classification [ J ]. Journal of Machine Learning Research, 2002, 2: 45-66.
  • 5Wu C H, Tzeng G H, Gee Y J, et al. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy[ J]. Expert Systems with Applications, 2007, 32(2) : 397-408.
  • 6Ahn H, Lee K, Kim K J. Global optimization of support vector machines using genetic algorithms for bankruptcy prediction[ J]. Springer, Heidelberg Lecture Notes in Computer Science, 2006, 4234: 420-429.
  • 7Lee M C. Using support vector machine with a hybrid feature selection method to the stock trend prediction [ J]. Expert Systems with Applications, 2009, 36 (8) : 10896-10904.
  • 8Akay M F. Support vector machines combined with feature selection for breast cancer diagnosis [ J ]. Expert Systems with Applications, 2009, 36(2): 3240-3247.
  • 9Chang C Y, Chen S J, Tsai M F. Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images [ J]. Pattern Recognition, 2010, 43 : 3494-3506.
  • 10Hsu C W,Chang C C ,Lin C J. A practical guide to SVM classification [ M/OL]. 2003. [2011-1-20]. http:///www, csie. ntu. edu. tw/- cjlin.

共引文献30

同被引文献57

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部