摘要
合成孔径雷达(SAR)目标识别在军事和民用领域都具有重要的研究价值。但由于SAR数据获取成本高、样本数目少,传统的卷积神经网络提取目标特征的能力不足,准确率低下。提出结合卷积注意力和胶囊网络的分类模型,利用胶囊网络中的多维向量神经元表示目标更多的特征;同时,考虑到少样本情况下目标特征信息缺乏,为提高神经网络的学习效率,对胶囊网络加入注意力机制,通过学习不同特征的重要程度,引导分类网络重点关注对分类结果贡献大的特征,弱化对分类结果贡献小的特征,提高神经网络的学习效率。针对MSTAR数据集和实测车辆数据集的实验结果表明,该算法的准确率高于传统的卷积神经网络和胶囊网络算法。
Synthetic aperture radar(SAR)target recognition has important research value in both military and civil fields.However,due to the high cost of SAR data acquisition and the small number of samples,the traditional convolutional neural network has insufficient ability to extract target features and low accuracy.This paper proposes a classification model combining convolutional attention and capsule network,which uses multi-dimensional vector neurons in the capsule network to represent more features of the target.At the same time,considering the lack of target feature information under the condition of small sample information,in order to improve the learning efficiency of the neural network,attention mechanism is added to the capsule network to guide the classification network to repeat the classification by learning the importance of different features,focusing on the features that contribute more to the classification results,and weakening the features that contribute less to the classification results.The experimental results on MSTAR data set and real vehicle data set show that the accuracy of the proposed algorithm is higher than those of the traditional convolution neural network and capsule network algorithm.
作者
霍鑫怡
李焱磊
陈龙永
张福博
孙巍
HUO Xinyi;LI Yanlei;CHEN Longyong;ZHANG Fubo;SUN Wei(National Key Lab of Microwave Imaging Technology,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《中国科学院大学学报(中英文)》
CSCD
北大核心
2022年第6期783-792,共10页
Journal of University of Chinese Academy of Sciences
基金
北京市科技新星计划(Z201100006820014)资助。
关键词
合成孔径雷达
SAR少样本目标识别
胶囊网络
卷积神经网络
卷积注意力机制
目标检测
synthetic aperture radar(SAR)
SAR small sample target recognition
capsule network
convolutional neural network
convolutional attention mechanism
object detection