期刊文献+

RBF神经网络与癌细胞黏附度活性检测研究

Assessment of Cancer Cell Viability Based on RBF Network and Adhesion Strength
下载PDF
导出
摘要 目的:研究癌细胞黏附强度与其活性的相关性,并利用机器学习算法提高细胞活性检测方法的准确性。方法:从同一批癌细胞培养皿中分离出两个样本组,一个样本组利用设计制作的离心式微流控芯片,建立癌细胞黏附脱离动态曲线,并提取细胞多黏附强度信息(τ20、τ50、τ80);另一个样本组细胞进行药物反应实验,得到药物反应的半抑制浓度(IC_(50)),利用RBF神经网络算法,将癌细胞多黏附信息作为输入,癌细胞半抑制浓度IC_(50)作为输出,建立细胞活性评估预测模型。结果:相比于传统细胞计数法,基于多黏附强度信息融合的细胞活性评估方法提高了17.2%,该方法具有统计学意义(P<0.05)。结论:利用细胞多黏附特征融合评估细胞活性的方法,有助于提高细胞活性检测精度,对抗癌新药物测试、细胞毒理学实验以及其他生化反应刺激实验具有至关重要的作用。 Objective:To study the correlation between adhesion strength and viability of cancer cells,and use machine learning algorithm to improve the accuracy of cell activity detection method.Methods:Two sample groups were separated from the same batch of cancer cell culture dishes.In one sample group,the dynamic curve of cancer cell adhesion and detachment was established by using the designed centrifugal microfluidic chip,and the information of cell multi-adhesion strength was extracted(τ20,τ50,τ80).Another sample group of cells was carried out drug reaction experiment to obtain the half inhibitory concentration(IC_(50))of drug reaction.Using RBF neural network algorithm,the multi-adhesion information of cancer cells was taken as the input and the IC_(50) of cancer cells was taken as the output to establish the cell viability evaluation and prediction model.Results:Compared with the traditional cell counting method,the cell viability evaluation method based on multi-adhesion strength information fusion increased by 17.2%(P<0.05).Conclusion:The method of evaluating cell viability by using the fusion of cell multi adhesion characteristics is helpful to improve the detection accuracy of cell activity.It plays an important role in the test of new anti-cancer drugs,cell toxicology and other biochemical reaction stimulation experiments.
作者 李丹 LI Dan(Department of Clinical Laboratory,Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine/Nanjing Second Hospital,Nanjing City,Jiangsu Province 210003)
出处 《医学理论与实践》 2022年第21期3604-3606,3621,共4页 The Journal of Medical Theory and Practice
关键词 细胞活性 黏附强度 离心力 RBF神经网络 微流控芯片 Cell viability Adhesion strength Centrifugal force RBF network Microfluidic chip
  • 相关文献

参考文献3

二级参考文献31

  • 1李保华,董向丽,孙显明,赵川德,才秀华,孙立宁.用于计算半数致死量(LD50)的SAS程序[J].莱阳农学院学报,2004,21(4):269-274. 被引量:10
  • 2YAMAMICHI K,UEHARA Y,KITAMURA N,et al.Increased expression of CD44v6m R N A significantly correlates with distant metastasisand poor prognosis in gastric cancer[J].Cancer,1998,79(3):256-262.
  • 3ORIAN-ROUSSEAU V.CD44,a therapeutic target for metastasising tumours[J].Eur J Cancer,2010,46(7):1271-1277.
  • 4YANG Y M,CHANG J W.Current status and issues in cancer stem cell study[J].Cancer Invest,2008,26(7):741-755.
  • 5MARHABA R,BOUROUBA M,Z LLER M.CD44v6promotes proliferation by persisting activation of MAP kinases[J].Cell Signal,2005,17(8):961-973.
  • 6MATSUMURA Y,HANBURY D,SMITH J,et al.Noninvasive detection of malignancy by identification of unusual CD44gene activity in exfoliated cancer cells[J].BMJ,1994,308(6929):619-624.
  • 7AFIFY A,MCNIEL M A,BRAGGIN J,et al.Expression of CD44s,CD44v6,and hyaluronan across the spectrum of normal-hyperplasia-carcinoma in breast[J].Appl Immunohistochem Mol Morphol,2008,16(2):121-127.
  • 8COLNOTDR,QUAKJJ,ROOSJC,et al.PhaseⅠtherapy study of186Re-labeled chimeric monoclonal antibody U36in patients with squamous cell carcinoma of the head and neck[J].J Nucl Med,2000,41(12):1999-2010.
  • 9HEINZ K H,KUTHAN H,STEHLE G,et al.CD44v6:a target for antibody-based cancer therapy[J].Cancer Immunol Immunother,2004,53(7):567-579.
  • 10BAGCI E Z,VODOVOTZ Y,BILLIAR T R,et al.Bistability in apoptosis:roles of bax,bcl-2,and mitochondrial permeability transition pores[J].Biophys J,2006,90(5):1546-1559.

共引文献174

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部