摘要
研究了一维空间中的半线性双曲系统初值问题的一类具有特殊形式的解.当方程∂_(t)U+∂_(x)U+mV=-αUV∂_(t)V-∂_(x)V-mU=βU^(2)的常数α=β时,利用先验估计得到了方程的解具有整体存在性,同时通过求解常微分方程得到了方程的驻波解.另外,对方程的通解进行了讨论.
A kind of solutions with special form for the initial value problem of semilinear hyperbolic system in one dimensional space are studied.When the constant of equation∂_(t)U+∂_(x)U+mV=-αUV∂_(t)V-∂_(x)V-mU=βU^(2) satisfiesα=β,the global existence of the solution of equation is obtained by using a priori estimation,and the standing wave solution of equation is obtained by solving the ordinary differential equation.In addition,the general solution of equation is discussed.
作者
孟嘉乐
MENG Jiale(College of Science,Yanbian University,Yanji 133002,China)
出处
《延边大学学报(自然科学版)》
CAS
2022年第3期213-216,共4页
Journal of Yanbian University(Natural Science Edition)
关键词
半线性双曲系统
整体存在性
驻波解
semilinear hyperbolic system
global existence
standing wave soliution