期刊文献+

一种改进的灰狼优化算法 被引量:2

An improved grey wolf optimization algorithm
下载PDF
导出
摘要 为了克服标准灰狼优化(GWO)算法寻优精度不高,难以在收敛速度和避免陷入局部最优之间取得平衡等问题,提出了一种改进的灰狼优化(IGWO)算法.该算法采用非线性收敛因子策略和自适应调整策略来提高寻优精度和加快收敛速度.选取10个基准函数对IGWO算法进行验证表明,IGWO算法的优化精度和收敛速度显著优于标准GWO算法和其他元启发式算法,因此本文提出的IGWO算法在求解最优参数方面具有良好的应用价值. An improved grey wolf optimization(IGWO)algorithm is proposed to overcome the problems of low optimization accuracy of standard grey wolf optimization(GWO)algorithm,difficulty of balance between the convergence speed and local optimization.IGWO algorithm utilizes nonlinear convergence factor strategy and adaptive adjustment strategy to improve the optimization accuracy,accelerate the convergence speed.Thus,10 benchmark functions are selected to verify the IGWO algorithm.The results show that the optimization accuracy and convergence speed of the IGWO algorithm are significantly better than the standard GWO algorithm and particle swarm optimization algorithm.Consequently,the proposed IGWO algorithm in this paper exhibit positive application value in solving the optimal parameters.
作者 陈贞 闫明晗 CHEN Zhen;YAN Minghan(College of Mechatronics and Information Engineering,Putian University,Putian 351100,China;College of Electronic Information Engineering,Changchun University,Changchun 130022,China)
出处 《延边大学学报(自然科学版)》 CAS 2022年第3期250-254,共5页 Journal of Yanbian University(Natural Science Edition)
基金 福建省自然科学基金(2019J01814) 莆田学院校级科研项目(2022033)。
关键词 灰狼优化算法 线性收敛因子 自适应调整策略 元启发式算法 grey wolf optimization algorithm nonlinear convergence factor adaptive adjustment strategy meta-heuristic algorithm
  • 相关文献

参考文献8

二级参考文献84

  • 1李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 2Kononenko I.Estimation attributes:analysis and extensions of RELIEF[C]//Proceedings of the 1994European Conference on Machine Learning.ACM Press,1997:273-324.
  • 3Kira K,Rendell L A.The feature selection problem:traditional methods and a new algorithm[C]//Proceedings of the9th National Conference on Artificial Intelligence.[S.l.]:AAAI Press,1992:129-134.
  • 4S. Mirjalili, S. M. Mirjalili, A. Lewis. Grey wolf optimizer. Advances in Engineering Software, 2014, 69(3): 46- 61.
  • 5E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm intelligence: from natural to artificial systems. New York: Oxford Univer- sity Press, 1999.
  • 6J. Kennedy, R. Eberhart. Particle swarm optimization. Proc. of the lEEE hternational Conference on Neural Networks, 1995: 1942- 1948.
  • 7R. Storn, K. Price. Differential evolution-a simple and effi- cient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341 - 359.
  • 8M. Dorigo, M. Birattari, T. Stutzle. Ant colony optimization. IEEE Computational lnteUigence Magazine, 2006, 1(4): 28- 39.
  • 9B. M. Vonholdt, D. R. Stahler, E. E. Bangs. A novel assess- ment of population structure and gene flow in grey wolf popu- lations of the Northern Rocky Mountains of the United States. Molecular Ecology, 2010, 19(20): 4412 - 4427.
  • 10C. M. Matthew, J. A. Vucetich. Effect of sociality and season on gray wolf tbraging behavior. Plos One, 2011, 6(3): 1 - 10.

共引文献386

同被引文献28

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部