摘要
肠息肉是一种结直肠表面突起的病变,并有可能进一步发展为结直肠癌,目前结直肠癌是我国第三大癌症.提前发现肠息肉并进行摘除是防止结直肠癌的有效方法,当前人工筛查仍存在较大程度的漏检测.对VGG16、ResNet18、GoogLeNet、EfficientNet和SeNet五种卷积神经网络模型进行肠息肉检测适应性研究,实验结果表明GoogLeNet模型性能较优.在2100张图像规模的数据集中,达到了准确率99.84%、精确率100%、召回率99.7%,可为结肠镜辅助息肉筛查提供支撑.
Intestinal polyp,a prominent lesion on the surface of the colorectal,may further develop into colorectal cancer,the third largest cancer now in China.Early detection and removal of intestinal polyps is an effective way to prevent colorectal cancer.Currently,there is still a large degree of missed detection in manual screening.In this paper,the adaptability of five convolutional neural network models of VGG16,ResNet18,GoogLeNet,EfficientNet,and SeNet was studied for intestinal polyp detection.The experimental results show that the GoogLeNet model performs the best.It achieves 99.84%in a dataset with 2,100 images when employed to judge the metric of accuracy.In addition,the precision and recall metrics achieve 100%and 99.7%,respectively.This work proves that GoogLeNet can support colonoscopy-assisted polyp screening.
作者
董煦
胡珂立
洪方雨
DONG Xu;HU Keli;HONG Fangyu(Department of Computer Science,Shaoxing University,Shaoxing,Zhejiang 312000)
出处
《绍兴文理学院学报》
2022年第10期47-52,共6页
Journal of Shaoxing University
基金
浙江省自然科学基金项目“基于中智决策和显著区域检测跟踪的结肠镜图像肠息肉分割研究”(LY20F020011)
教育部人文社会科学研究青年基金项目“智能医疗背景下服务于结直肠癌筛查的息肉区域提取对策模型研究”(21YJCZH039)
绍兴文理学院重点科研项目“面向息肉检测的图像分割注意力机制研究”(2020LG1004).
关键词
深度学习
结肠镜
肠息肉
卷积神经网络
deep learning
colonoscopy
intestinal polyp
convolutional neural network