期刊文献+

H(curl)空间中椭圆最优控制问题的自适应有限元算法 被引量:1

The Adaptive Finite Element Method for Elliptic Optimal Control Problem in H(curl) Space
下载PDF
导出
摘要 针对H(curl)空间椭圆型最优控制问题提出了一种自适应有限元方法。首先将H(curl)空间Maxwell方程的最优控制模型转化为偏微分方程组,给出了偏微分方程组的解得正则性。其次利用自适应有限元方法求解此偏微分方程组,同时讨论了方法的后验误差及收敛性。最后通过数值算例给出了该方法的数值结果,验证了有限元方法的有效性和可靠性。这一方法可以应用于更复杂的最优控制问题的求解。 In this paper, we present and analyze the adaptive finite element method for elliptic optimal control problem in H(curl) space. Firstly, based on Maxwell equation, we propose the elliptical optimal control problem in H(curl) space and establish an optimal control system.The optimal control model is equivalently transformed into the PDE systems and present the regularity property of the OCM. Then we apply the AFEM to solve the system. For the finite element approximation, we introduce the limitations of the posterior error estimator of the residual type and prove the convergence. The numerical examples are presented to verify theoretical results and indicate that the AFEM is more reliable and effective under the same conditions. Finally, our theoretical analysis and numerical algorithms can be promoted and applied to more complex problems.
作者 贺之龙 赵建平 杨欢 李兵 席梦茹 HE Zhilong;ZHAO Jianping;YANG Huan;LI Bing;XI Mengru(College of Mathematics and System Sciences,Xinjiang University,Urumqi 830017)
出处 《工程数学学报》 CSCD 北大核心 2022年第5期775-796,共22页 Chinese Journal of Engineering Mathematics
基金 新疆维吾尔自治区自然科学基金(2019D01C047) 国家自然科学基金(61962056)。
关键词 椭圆最优控制问题 后验误差估计 自适应算法 elliptic optimal control problem posteriori error estimate adaptive convergence
  • 相关文献

参考文献1

二级参考文献31

  • 1A. Buffa and Ph. Ciarlet Jr., On traces for functional spaces realted to Maxwell's Equations. Part I: An integration by parts formula in Lipschitz polyhedra, Math. Method. Appl. Sci., 24 (2001), 9-30.
  • 2A. Buffa and Ph. Ciarlet Jr., On traces for functional spaces realted to Maxwell's equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications, Math. Method. Appl. Sci., 24 (2001), 31-48.
  • 3A. Buffa, M. Costabel, and D. Sheen, On traces for H(curl,Ω) in Lipschitz domains, J. Math. Anal. Appl., 276 (2002), 845-867.
  • 4C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive edge finite element method for the 2d eddy current equations, J. Numer. Math., 13 (2005), 19-32.
  • 5C. Carstensen and R.H.W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method, Math. Comput., 75 (2006), 1033-1042.
  • 6C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive nonconforming finite element method, Numer. Math., 103 (2006), 251-266.
  • 7W. Dorfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124.
  • 8K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computational Differential Equations, Cambridge University Press, Cambridge, 1995.
  • 9R. Hiptmair, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal., 36 (1998), 204- 225.
  • 10R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 11 (2002), 237- 339.

共引文献4

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部