摘要
针对小样本及复杂环境下接触网关键设备缺陷检测难等问题,文中提出了一种基于改进型Faster R-CNN的接触网设备缺陷检测技术。针对原始的Faster R-CNN网络,采用ResNet-101替代VGG-16来构建基础卷积层,维护目标的原始结构,提升检测速度。通过对不同卷积层的特征图进行多尺寸融合,提高对多种设备缺陷的检测精度。实验结果表明,改进后的Faster R-CNN能够在复杂接触网设备中实现零部件的精确检测,mAP达到88.28%,每张图片检测时间仅需0.15秒。与相同条件下的其它检测算法相比,综合性能最佳。
出处
《江西电力》
2022年第8期16-19,共4页
Jiangxi Electric Power
基金
国家自然科学基金(52167008,51867010)
江西省自然科学基金杰出青年基金项目(20202ACBL214021)