期刊文献+

基于图像对齐和不确定估计的深度视觉里程计

Deep Visual Odometry Based on Image Alignment and Uncertainty Estimation
下载PDF
导出
摘要 基于深度学习的视觉里程计方法(deepvisualodometry,DVO)通过神经网络直接估计单目图像的深度和相邻图像之间的相机运动,在保证精度的同时大大提高了运行速度。但这是基于灰度不变假设,作为一个很强的假设,灰度不变假设在现实场景中往往难以满足。为此,提出一种基于图像对齐(imagealignment,IA)的直接视觉里程计方法AUDVO(alignedU-CNNdeepVO),通过不确定性估计网络(uncertaintyCNN,U-CNN)引入正则项进行约束,使得估计的结果更具鲁棒性。为了处理大面积纹理缺失区域上因估计不准确带来的空洞,在设计深度估计模块时通过嵌入超分辨率网络进行上采样。在公开的KITTI数据集上的实验证明了AUDVO在深度和相机位姿估计上的有效性。 Deep learning based visual odometry methods can directly estimate the depth of monocular images and camera movement between adjacent images,which achieve high accuracy and improve running speed.However,this is based on a strong assumption of gray scale invariance,which is often not satisfied in real scenes.As a consequence,a self-supervised method for direct visual odometry based on image alignment is proposed,which gets a robust estimation result with the uncertainty regularization terms estimated from the uncertainty estimation network(uncertainty CNN,U-CNN)and it is called AUDVO(aligned U-CNN deep VO).Meanwhile,a super resolution network is incorporated into the depth estima-tion module instead of using a simple interpolation operation for upsampling in order to deal with the holes caused by the inaccurate estimation in the large non-texture area.The evaluation results on the public KITTI datasets demonstrate the effectiveness of AUDVO for robust single-view depth estimation and visual odometry.
作者 秦超 闫子飞 QIN Chao;YAN Zifei(Department of Media Technology and Art,School of Architecture,Harbin Institute of Technology,Key Laboratory of Interactive Media Design and Equipment Service Innovation,Ministry of Culture and Tourism,Harbin 150001,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第22期101-107,共7页 Computer Engineering and Applications
基金 国家自然科学基金面上项目(61872118) 文旅部重点实验室资助项目。
关键词 视觉里程计 深度学习 不确定性估计网络 visual odometry deep learning uncertainty estimation network
  • 相关文献

参考文献1

二级参考文献9

  • 1Leonard J J, Durrant-Whyte H E Mobile robot localization by tracking geometric beacons[J]. IEEE Transactions on Robotics and Automation, 1991, 7(3): 376-382.
  • 2Dissanayake G, Newman P, Clark S, et al. A solution to the simultaneous localization and map building (SLAM) problem[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241.
  • 3Murphy K E Bayesian map learning in dynamic environments [C]//Advances in Neural Information Processing Systems 12. USA: MIT Press, 2000: 1015-1021.
  • 4Civera J, Davison A J, Montiel J M M. Interacting multiple model monocular SLAM[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2008: 3704-3709.
  • 5Montiel A D J, Civera J, Davison A J. Unified inverse depth parametrization for monocular SLAM[C]//Proceedings of Robotics: Science and Systems. 2006.
  • 6Guivant J, Nebot E. Improving computational and memory requirements of simultaneous localization and map building algorithms[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 2731-2736.
  • 7Anousaki G C, Kyriakopoulos K J. Simultaneous localization and map building of skid-steered robots[J]. IEEE Robotics and Automation Magazine, 2007, 14(1): 79-89.
  • 8Eade E, Drummond T. Monocular SLAM as a graph of coalesced observations[C]//IEEE International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 2007: 2028- 2035.
  • 9Bouguet J-Y, Perona P. Visual navigation using a single camera[C]//IEEE International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 1995: 645-652.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部