期刊文献+

三支残差修正的燃气负荷预测 被引量:1

Gas Load Forecasting with Three-Way Residual Correction
下载PDF
导出
摘要 燃气负荷的准确预测对于燃气调度、规划燃气使用有着重要的意义。单一的预测模型在燃气负荷预测中不能取得很好的预测效果,故基于燃气负荷数据的特点设计了一种三支残差修正的燃气负荷组合预测模型。首先基于燃气负荷数据特点,采用鲁棒局部加权回归对负荷序列进行了分解,针对分解后的趋势项、周期项、余项设计了ARIMA(autoregressive integrated moving average)和LightGBM(light gradient boosting machine)的组合预测模型,然后结合三支决策理论设计了三支残差修正法对LightGBM的预测结果进行修正。实验结果表明该组合模型的表现良好,预测效果优于常见单一模型。 Accurate prediction of gas load is very important to dispatch and plan gas usage.A single forecasting model can not achieve good forecasting effects in gas load forecasting.Therefore,this paper designs a combined forecasting model with three-way residual correction according to the characteristics of gas load data.The model firstly decomposes load sequence with robust locally weighted regression,then the combination of ARIMA(autoregressive integrated moving average)and LightGBM(light gradient boosting machine)is designed for the decomposed trend item,periodic item and remaining item,and three-way residual correction is designed to correct the prediction of LightGBM based on three-way decision.The experiment shows that the proposed combined model performs well and the prediction is better than com-mon single models.
作者 王兵 吴思琪 方宇 WANG Bing;WU Siqi;FANG Yu(School of Computer Science,Southwest Petroleum University,Chengdu 610500,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第22期291-296,共6页 Computer Engineering and Applications
基金 南充市市校科技战略合作项目(18SXHZ0052) 西南石油大学研究生全英文课程建设项目(2020QY04)。
关键词 燃气负荷预测 三支决策 时序预测 ARIMA LightGBM 鲁棒局部加权回归 gas load forecasting three-way decision time series ARIMA LightGBM robust locally weighted regression
  • 相关文献

参考文献8

二级参考文献69

  • 1沈百新.利用专家系统预测地区用电负荷[J].电力需求侧管理,2005,7(2):49-50. 被引量:9
  • 2焦文玲,朱宝成,冯玉刚.基于BP神经网络城市燃气短期负荷预测[J].煤气与热力,2006,26(12):12-15. 被引量:17
  • 3Li L L, Gong C Z, Wang D Y, et al. Multi-agent simulation of the time-of-use pricing policy in an urban natural gas pipeline network: A case study of Zhengzhou[J]. Energy, 2013, 52(1): 37-43.
  • 4Lingras P, Butz C J. Rough support vector regression[J]. European Journal of Operational Research, 2010, 206(2): 445-455.
  • 5Javed F, Arshad N, Wallin F, et al. Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting[J]. Applied Energy, 2012, 96: 150- 160.
  • 6Sudheer C, Anand N, Panigrahi B K, et al. Streamflow forecasting by SVM with quantum behaved particle swarm optimization[J]. Neurocomputing, 2013, 101:18- 23.
  • 7Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
  • 8Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293 -300.
  • 9Mohandes M. Support vector machines for short-term electrical load forecasting[J]. International Journal of Energy Research, 2002, 26(4): 335- 345.
  • 10Nagi J, Yap K S, Nagi F, et al. A computational intelligence scheme for the prediction of the daily peak load[J]. Applied Soft Computing, 2011, 11(8): 4773-4788.

共引文献412

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部