摘要
随着社会与经济的快速发展,农业信息化进程日益加快,机器学习在农业方面的应用越来越广泛。随机森林作为一种组合式机器学习算法,通过对大量分类树的汇总可快速处理大批量数据,因具有更高的准确性和稳定性,被广泛应用于农业领域。随机森林算法常用于农业干旱监测、农作物产量预测、农作物品质分类等,笔者对近几年随机森林在农业方面的应用进行梳理研究。研究结果表明,随机森林作为机器学习的一种算法,在农业上的应用越来越广泛;随机森林算法具有高精度以及对数据的强大处理能力,可以有效地避免数据过多时出现数据冗余的情况。
With the rapid development of society and economy,the process of agricultural informatization is accelerating day by day,and machine learning is applied more and more widely in agriculture.As a combined machine learning algorithm,random forest can quickly process a large number of data through the summary of a large number of classification trees.Because it has higher accuracy and stability,it is widely used in the agricultural field.Random forest algorithm is widely used in agricultural drought monitoring,crop yield prediction,crop quality classification,etc.The author summarizes the research and application of random forest in agriculture in recent years.The results show that random forest,as an algorithm of machine learning,is more and more widely used in agriculture;Random forest algorithm has high precision and powerful data processing ability,which can effectively avoid data redundancy when there are too many data.
作者
李衍瑞
Li Yanrui(College of Information Engineering,Tarim University,Xinjiang Alar 843300)
出处
《南方农机》
2022年第22期63-65,87,共4页
基金
塔里木大学研究生创新项目“随机森林在哈密瓜品质无损检测中的应用研究”(TDGRI202147)。
关键词
随机森林
机器学习
农业
random forest
machine learning
agriculture