期刊文献+

基于特征增维和近邻成分分析的民航发动机故障分类方法

Aeroengine Fault Classification Method Based on Feature Expand and Neighbourhood Components Analysis
下载PDF
导出
摘要 为提高航空发动机故障诊断准确度,提出了一种从快速存取记录器(QAR)数据中提取最合适故障特征的方法。对原始QAR数据进行缺失值填补和巡航点提取操作,选择部分发动机性能参数差值作为初始特征值;再采用特征增维方法挖掘隐藏特征信息,进而采用近邻成分分析算法进行特征筛选优化,将所提方法与朴素贝叶斯等4种分类算法相结合,对某航空公司CFM56-7B发动机的QAR数据进行试验验证。结果表明:从QAR数据中提取最合适故障特征的方法能有效地提高发动机故障分类算法的准确率,且适用于不同的诊断算法,准确率优于80%。 In order to improve the accuracy of aeroengine fault diagnosis,a method for extracting the most suitable fault features from QAR data was proposed.Firstly,the missing value filling and cruising point extraction were performed on the original QAR data,and some engine performance parameter differences were selected as the initial characteristic values.Then the method of feature expand was used to excavate the hidden feature information and furthermore,feature selection and optimization were carried out by using the nearest neighbor component analysis algorithm(NCA).Finally,the method proposed in this paper was combined with four classification algorithms such as Naive Bayes to carry out experimental verification on the CFM56-7B engines’QAR data of an airline.The results show that the optimal features can effectively improve the accuracy of engine fault diagnosis algorithm and are applicable to different diagnosis algorithms,accuracy of diagnosis exceeds 80%.
作者 孔祥兴 刘凯伟 莫李平 王奕首 卿新林 KONG Xiang-xin;LIU Kai-wei;MO Li-ping;WANG Yi-shou;QING Xin-lin(AEAC,Beijing 101304,China;School of Aerospace Engineering,Xiamen University,Xiamen 361005,China)
出处 《航空发动机》 北大核心 2022年第5期40-44,共5页 Aeroengine
基金 装发联合基金(6141B090301)资助。
关键词 特征增维 近邻成分分析 快速存取记录器数据 故障诊断 航空发动机 feature expand neighbourhood components analysis QAT data fault diagnosis aeroengine
  • 相关文献

参考文献13

二级参考文献80

  • 1韩聚强,李国安,郭汉斌,熊锦华,李亚松,王帅,龚丽娟,曹建彪,黄志刚.原发性肝癌微创介入治疗术后HBV再激活及相关影响因素研究[J].中国医学前沿杂志(电子版),2014,6(3):27-30. 被引量:9
  • 2吴月伟,杨慧.基于RBF神经网络的飞机发动机故障诊断研究[J].计算机工程,2005,31(B07):266-267. 被引量:10
  • 3徐启华,杨瑞.基于AdaBoost算法的故障诊断仿真研究[J].计算机工程与设计,2005,26(12):3210-3212. 被引量:2
  • 4Jolliffe I J. Principal component analysis [ M ]. NY : Springer- Verlag, 1986.
  • 5Scholkopf B, Smola A, Mailer K. Kernel principal component analysis[ M]//Adv in Kernel Methods--SV Leaming,Cambr, MA : MIT Press, 1999.
  • 6Fukunaga K. Statistical pattern recognition [ M ]. NY: Acad Press, 1989.
  • 7Kocsor A, Kovacs K, Szepesvari C. Margin maximizing discriminant analysis[ C]//Proceedings of the 15^th European Conference on Machine Learning. Pisa, Italy, 2004 : 227 - 238.
  • 8Tsang I W, Kocsor A, Kwok J T. Efficient kernel feature extraction for massive data sets [ C ]//Proceedings of the 12^th ACM SIGKDD international conference on Knowledge discovery and data mining. Philadelphia, PA, USA ,2006:724 - 729.
  • 9Tax D, Duin R. Support vector domain description [ J ]. Machine Learning,2004,54:45 - 66.
  • 10Steinwartet I, Hush D, Scovel C. A classification framework for anomaly detection [ J ]. J Mach Learn Res ,2005,6:211 - 232.

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部