期刊文献+

基于高斯混合模型的发动机稳态数据特征值提取方法 被引量:1

Eigenvalue Extraction Method for Engine Steady-state Data Based on Gaussian Mixture Model
下载PDF
导出
摘要 因航空发动机的工作环境及工作特性所致,其稳态试验数据常伴有噪声干扰,对稳态值计算结果的准确性造成影响。在对稳态数据进行正态性检验后,利用稳态数据来源的正态特性,以及利用混合模型对数据的良好回归特性,基于高斯混合模型对稳态数据进行筛选分类。依托发动机稳态数据分布形式的相近性与数据本身的统计特性,来确定稳态数据特征值的提取方法。在对发动机稳态数据进行数据筛选以及对比不同稳态数据片段后,验证模型方法的数据降噪效果以及稳态数据特征值计算结果与同一稳定工作状态数据片段的选取不相关性。结果表明:从仿真数据的筛选结果以及不同稳态数据片段的验证结果可知,该方法具有较强的稳定性,可有效筛选出发动机稳态点数据,并准确计算出发动机稳态值,一般收敛结果相对误差在0.2%以内。 Due to the working environment and characteristics of aeroengine,its steady-state test data were often accompanied by noise interference,which affected the accuracy of steady-state value calculation results.After the normality test of the steady-state data,the Gaussian mixture model was used to screen and classify the steady-state data based on the normal characteristics of the steady-state data source and the good regression characteristics of the mixed model.Based on the similarity of the distribution form of engine steady-state data and the statistical characteristics of the data itself,the extraction method of steady-state data eigenvalues was determined.After data screening of engine steady-state data and comparison of different steady-state data segments,the data noise reduction effect of the model method and the calculation results of steady-state data eigenvalues were verified to be independent to the segment selection of the same steady-state data.The results show that from the screening results of simulation data and the verification results of different steady-state data segments,the method has strong stability,which can effectively screen the steady-state point data of the engine and accurately calculate the steady-state value of the engine.Generally,the relative error of the convergence result is within 0.2%.
作者 哈圣 徐昊 唐震 朱赤洲 HA Sheng;XU Hao;TANG Zhen;ZHU Chi-zhou(AECC Shenyang Engine Research Institute,Shenyang 110015,China)
出处 《航空发动机》 北大核心 2022年第5期173-179,共7页 Aeroengine
基金 航空动力基础研究项目资助。
关键词 稳态数据 特征值提取 噪声 高斯混合模型 航空发动机 steady-state data eigenvalue extraction noise Gaussian mixture model aeroengine
  • 相关文献

参考文献6

二级参考文献47

  • 1腾召胜.智能检测系统与数据融合[M].北京:机械工业出版社,1999,12..
  • 2La Jolla. Alternatives to the k-means algorithm that find better clustering. Department of Computer Science and Engineering,University of California,San Diego,CA92093
  • 3Kaufan L,Rousseeuw PJ.Finding Groups in Data:an Introduction to Cluster Analysis[M].New York:John Wiley & Sons, 1990
  • 4Guha S,Rastogi R,Shim K.CURE:an efficient clustering algorithm for large databases[C].In:Haas LM,Tiwary A eds.Proceedings of the ACM SIGMOD International Conference on Management of Data,Seattle: ACM Press, 1998: 73~84
  • 5Agrawal R,Gehrke J,Gunopolos D et al. Automatic subspace clustering of high dimensional data for data mining application[C].In:Haas LM,Tiwary A eds. Proceedings of the ACM SIGMOD International Conference on Management of Data, Seattle: ACM Press, 1998: 94~105
  • 6刘兆平.粗大误差,东方人华科技有限公司,
  • 7Jain A K,Murty M N,Flynn P J. Data Clustering:A Review[J].{H}ACM COMPUTING SURVEYS,1999,(03):264323.
  • 8Jain A K. Data Clustering:50 Years Beyond K-means[J].Pattern Rec-ognition Letters,2010,(08):651666.
  • 9Celeb M,Kingravi H,Vela P. A Comparative Study of Efficient Initial-ization Methods for the K-Means Clustering Algorithm[J].Expert Sys-tems with Applications,2013,(01):200210.
  • 10Forgy E. Cluster Analysis of Multivariate Data:Efficiency vs.Interpret-ability of Classification[J].{H}BIOMETRICS,1965.768.

共引文献321

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部