期刊文献+

基于微地震数据的增强型地热储层参数及采热的数值模拟研究 被引量:7

A study of numerical simulations for enhanced geothermal reservoir parameters and thermal extraction based on microseismic data
下载PDF
导出
摘要 发展清洁、稳定、可再生的干热岩型地热资源对于缓解能源危机、减轻环境污染、改善人类健康具有重要意义。增强型地热系统(Enhanced Geothermal System,EGS)是一项改造干热岩天然储层,高效开发地热能资源的先进技术。以澳大利亚库珀盆地地热储层为研究对象,基于水力压裂实测微震数据,建立了三维分区均质渗透率模型和非均质渗透率模型,分别进行储层温度场、流场及采热性能变化的研究,并对比其差异。结果表明:在同样的注采流量下,由于非均质模型中微震事件集中于井口附近,进而形成明显的优势流动通道,流体从注入井更快流向生产井,温度下降速度相对更快,分区均质模型中优势流动通道没有非均质模型明显,温度下降速度较慢;地热模型运行期间分区均质模型的采热量变化相对稳定,降幅为3.74%,非均质模型采热量降幅较大,为12.72%。分区均质模型的模拟结果相比于非均质模型,温度下降幅度小、采热量高;但实际储层中的渗透率分布不均,分区均质模型的模拟采热量相比实际采热量偏高,因此在实际应用中,非均质模型的模拟结果对实际工程更具参考意义。 The development of clean,stable,and renewable hot dry rock geothermal energy is significant for alleviating the energy crisis,reducing environmental pollution,and improving human health.Enhanced geothermal system(EGS)is an advanced technology for developing geothermal energy efficiently by stimulating hot dry rock reservoir.This technology involves a complex hydro-thermal coupling process.A numerical approach is usually applied for analyzing heat extraction.In this paper,taking the geothermal reservoir of the Cooper basin in Australia as the research object,two models–a 3D zonal homogeneous permeability model and a heterogenious permeability model–are established based on the measured microseismic data of hydraulic fracturing.The latter one is inversed from microseismic data.The temperature field,seepage field and thermal performance of the reservoir are numerically studied,and their differences are compared and analyzed.The results show that with the same injection-production flow rate,fluid flows more quickly from the injection well to the production well while the temperature drops relatively more rapidly in the inhomogeneous model due to the dominant channel revealed by dense microseismic events near the wellbore.In the homogeneous model,the dominant flow channel is not as pronounced as in the previous model,and the temperature decreases more slowly.During the operation of the geothermal reservoir model,the change in heat recovery of the zonal homogeneous model is relatively stable,with a decline of 3.74%,and that of the inhomogeneous model is rather obvious,with a decline of 12.72%.Compared with the inhomogeneous model,a smaller temperature drop and a higher heat recovery exist in the homogeneous model.However,the permeability in the actual reservoir is uneven,and the simulated heat recovery of the zonal homogenization model is higher than the actual recovery.Therefore,the simulation results of the inhomogeneous model have more reference significance for practical engineering.
作者 马子涵 邢会林 靳国栋 谭玉阳 闫伟超 李四海 MA Zihan;XING Huilin;JIN Guodong;TAN Yuyang;YAN Weichao;LI Sihai(Frontiers Science Center for Deep Ocean Multispheres and Earth System,Key Lab of Submarine Geosciences and Prospecting Techniques,MOE and College of Marine Geosciences,Ocean University of China,Qingdao,Shandong 266100,China;Pilot National Laboratory for Marine Science and Technology(Qingdao),Qingdao,Shandong 266237,China;International Center for Submarine Geosciences and Geoengineering Computing(iGeoComp),Ocean University of China,Qingdao,Shandong 266100,China)
出处 《水文地质工程地质》 CAS CSCD 北大核心 2022年第6期190-199,共10页 Hydrogeology & Engineering Geology
基金 国家自然科学基金面上项目(52074251) 国家自然科学基金重大计划重点支持项目(92058211) 国家自然科学基金委创新群体项目(42121005) 中央高校基本科研业务经费(202012003) 高等学校学科创新引智计划(B20048)。
关键词 增强型地热系统 微震数据 渗透率 热流耦合 数值模拟 EGS microseismic data permeability hydro-thermal coupling numerical simulation
  • 相关文献

参考文献6

二级参考文献74

  • 1赵慈平,冉华,陈坤华.由相对地热梯度推断的腾冲火山区现存岩浆囊[J].岩石学报,2006,22(6):1517-1528. 被引量:73
  • 2廖志杰,尹正武,贾希义,吕维新.腾冲热海地热田的概念模型[J].高校地质学报,1997,3(2):212-221. 被引量:9
  • 3Bjomsson, G, Bodvarsson, G, 1990. A Survey of Geothermal Reservoir Properties. Geothermics, 19:17-27.
  • 4Bringemeier, D., Wang, X., Xing, H. L., et al., 2010. Modelling of Multiphase Fluid Flow for an Open Pit Development within a Geothermal Active Caldera. In: Proceedings of the 11th IAEG Congress (Intemational Association for Engi- neering Geology and the Environment). Auckland, New Zealand.
  • 5Brown, D., DuTeaux, R., Kruger, P., et al., 1999. Fluid Circula- tion and Heat Extraction from Geothermal Reservoirs. Geo- thermics, 28:553-572.
  • 6Cox, S. F., Knackstedt, M. A., Braun, J., 2001. Principles of Structural Control on Permeability and Fluid Flow in Hydrothermal Systems. Reviews in Economic Geology, 14: 1-24.
  • 7De Simone, S., Vilarrasa, V., Carrera, J., et al., 2013. Thermal Coupling may Control Mechanical Stability of Geothermal Reservoirs during Cold Water Injection. Physics and Chem- istry of the Earth, Parts A/B/C, 64:117-126.
  • 8Driesner, T., Heinrich, C. A., 2007. The System H20-NaC1. I. Correlation Formulae for Phase Relations in Temperature- Pressure-Composition Space from 0 to 1 000 ℃, 0 to 5 000 bar, and 0 to 1 XNaC1. Geochimiea et Cosmochimica Acta, 71:4880-4901.
  • 9Gao, J., Xing, H. L., 2012a. LBM Simulation of Fluid Flow in Fractured Porous Media with Permeable Matrix, Theor Appl. Mech. Lett., 2: 032001(4).
  • 10Gao, J., Xing, H. L., 2012b. High Performance Simulation of Complicated Fluid Flow in 3D Fractured Porous Media Us- ing LBM. In: 10th International Meeting on High- Performance Computing for Computational Science. Kobe, Japan.

共引文献72

同被引文献122

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部