期刊文献+

基于机器学习的结冰风洞温度场均匀性分析 被引量:4

Uniformity analysis of temperature field in wind tunnel based on machine learning
下载PDF
导出
摘要 为提高结冰风洞的试验效率和流场品质,需建立温度快速预测方法以及提高风洞温度场均匀性。针对结冰风洞换热器出口气流温度建立了基于机器学习的预测模型,为解决真实场景下数据量小的问题,采用变分自编码器(VAE)进行数据增强,后采用遗传算法优化XGBoost方法建立最终的温度预测模型;在此基础上,利用已建立预测模型对风洞温度场均匀性及其影响因素进行了分析。结果表明:通过模型预测的换热器出口气流温度与真实值的平均绝对误差(MAE)约为0.60℃,R^(2)分数约为98.38%;试验风速、模拟高度以及回气压力等工况参数对温度场均匀性均有一定影响。 In order to improve the test efficiency and flow field quality of the icing wind tunnel,it is necessary to establish a method of fast temperature prediction and improve the uniformity characteristics of the temperature field of the wind tunnel.In this paper,a prediction model based on machine learning was established for the outlet air temperature of the icing wind tunnel heat exchanger.In order to solve the problem of small data volume in the real scene,the variational autoencoder(VAE)is used for data enhancement,and then the genetic algorithm is used to optimize XGBoost method to establish the final temperature prediction model.On this basis,the temperature uniformity of the heat exchanger airflow and its influencing factors are analyzed by the established prediction model.The results show that the mean absolute error(MAE)of the airflow temperature at the outlet of the heat exchanger between that predicted by this model and the actual value is about 0.60℃,and the R^(2) score is about 98.38%.The working parameters such as test wind speed,simulated height,and return pressure all have certain influence on the uniformity of the temperature field.
作者 张兴焕 张平涛 彭博 易贤 Zhang Xinghuan;Zhang Pingtao;Peng Bo;Yi Xian(School of Computer Science,Southwest Petroleum University,Chengdu 610500,China;Key Laboratory of Icing and Anti/Deicing,China Aerodynamics Research and Development Center,Mianyang 621000,China;Key Laboratory of Aerodynamics,China Aerodynamics Research and Development Center,Mianyang 621000,China)
出处 《低温工程》 CAS CSCD 北大核心 2022年第5期76-82,共7页 Cryogenics
基金 国家自然科学基金重点基金(12132019) 国家重大科技专项(J2019-III-0010-0054)。
关键词 结冰风洞 数据增强 温度场均匀性 VAE 遗传算法 XGBoost ice wind tunnel data enhancement temperature field uniformity VAE genetic algorithm XGBoost
  • 相关文献

参考文献5

二级参考文献28

  • 1陈颖,邓先和,丁小江,王杨君,李志武.强化缩放管内湍流对流换热[J].化工学报,2004,55(9):1528-1531. 被引量:33
  • 2张和平,裴威,刘洁.流体绕流椭圆管束流阻特性的数值模拟[J].淮海工学院学报(自然科学版),2004,13(4):14-16. 被引量:7
  • 3李惠珍,屈治国,程永攀,陶文铨.开缝翅片流动和传热性能的实验研究及数值模拟[J].西安交通大学学报,2005,39(3):229-232. 被引量:34
  • 4张春雨,李妩.排数对矩形翅片椭圆管束换热的影响[J].华南理工大学学报(自然科学版),1995,23(10):117-122. 被引量:2
  • 5陈德华,李建强.先进飞行武器研制对空气动力学发展之需求[R].空气动力学研究文集[c].2006,16:221-229.
  • 6NAPHON P, WONGWISES S. A review of flow and heat transfer characteristics in curved tubes[J]. Renewable and Sustainable Energy Reviews, 2006, 10: 463-490.
  • 7SAHITI N, DURST F, DEWAN A. Heat transfer enhancement by pin elements[J]. International Journal of Heat and Mass Transfer, 2005, 48: 4738-4747.
  • 8SAHITI N, DURST F, DEWAN A. Strategy for selection of elements for heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 2006, 49: 3392-3400.
  • 9JACIMOVIC B M, GENIC S B, LATINOVIC B R. Research on the air pressure drop in plate finned tube heat exchangers[J]. International Journal of Refrigeration, 2006, 29: 1138-1143.
  • 10MAZIASZ P J, PINT B A, SHINGLEDECKER J P, EVANS N D, et al. Advanced alloys for compact, high- eificiencys, high-temperature heat exchangers[J]. International Journal of Hydrogen Energy, 2006, 8 : 1- 9.

共引文献30

同被引文献32

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部