期刊文献+

奇异值分解域差异性度量的低景深图像显著性目标提取方法 被引量:4

Salient Target Extraction from Low Depth of Field Images Based on Diversity Measure in Singular Value Decomposition Domain
下载PDF
导出
摘要 针对低景深图像(DOF)目标提取过程中,容易出现目标提取不完整或背景被误识为目标等现象,该文提出一种奇异值分解(SVD)域差异性度量的低景深图像目标提取方法。先对低景深图像进行高斯模糊,以图像中每一个像素点为中心,利用滑动窗口分别截取模糊前后图像上相同位置的图像块并进行奇异值分解,再构造两奇异值之间的差异特征向量,针对此向量定义低中高全频段信息加权的差异性度量算子,计算对应像素点的显著性特征值,逐像素处理得到显著性结果图并进行阈值化处理,实现低景深图像目标的有效提取。对大量低景深图像进行处理,并与几种现有方法进行比较,提出方法的F度量值最大可提高54%,平均绝对误差减少76%~87%,可完整提取目标并有效去除背景,具有较强的可靠性。 In the process of target extraction in low Depth Of Field(DOF)image,it is easy to get incomplete target extraction or the background is mistakenly recognized as a target.A low DOF image target extraction method based on Singular Value Difference(SVD)measurement is proposed.Firstly,Gaussian blur is applied to the low DOF image.Taking the current pixel as the center,the image blocks at the same position on the image before and after blur are intercepted by using the sliding window,and singular value decomposition is carried out.Then,the difference feature vector between the two singular values is constructed.Based on this vector,the difference measurement operator is defined to calculate the characteristic intensity value of the corresponding pixel.The feature salient map is obtained by pixel by pixel processing,and the threshold processing is carried out to realize the effective extraction of low DOF image targets.A large number of low DOF images are processed,and compared with several existing methods,the maximum F measure can be increased by 54%,and the average absolute error can be reduced by 76%~87%.The proposed method can completely extract the target and effectively remove the background,and has strong reliability.
作者 章秀华 程鉴 洪汉玉 张天序 ZHANG Xiuhua;CHENG Jian;HONG Hanyu;ZHANG Tianxu(Hubei Key Laboratory of Optical Information and Pattern Recognition,Wuhan Institute of Technology,Wuhan 430205,China;Institute for Pattern Recognition and Artificial Intelligence,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2022年第11期3987-3997,共11页 Journal of Electronics & Information Technology
基金 国家自然科学基金(62171329,61671337)。
关键词 低景深图像 奇异值分解域 特征向量构造 差异性度量 显著性目标提取 Low Depth Of Field(DOF)image Singular Value Decomposition(SVD)domain Feature vector construction Diversity measure Salient target extraction
  • 相关文献

参考文献3

二级参考文献21

  • 1Kim C. Segmenting a low-depth-of-field image using mor- phological filters and region merging. IEEE Transactions on Image Processing, 2005, 14(10): 1503-1511.
  • 2Ko J, Kim M, Kim C. 2D-to-3D stereoscopic conversion: depth-map estimation in a 2D single-view image. In: Pro- ceedings of SHE. 2007, 6696: 66962A.
  • 3Li H L, Ngan K N. Learning to extract focused objects from low DOF images. IEEE Transactions on Circuits and Sys- tems for Video Technology, 2011, 21(11): 1571-1580.
  • 4Shi L L, Funt B. Quaternion color texture segmenta- tion. Computer Vision and Image Understanding, 2007, 107(1-2): 88-96.
  • 5Chen J Q, Pappas T N, Mojsilovic A, Rogowitz B E. Adaptive perceptual color-texture image segmentation. IEEE Transactions on Image Processing, 2005, 14(10): 1524-1536.
  • 6Deng Y N, Manjunath B S. Unsupervised segmentation of color-texture regions in images and video. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2001, 23(8): 800-810.
  • 7Allili M S, Ziou D. Globally adaptive region information for automatic color-texture image segmentation. Pattern Recognition Letters, 2007, 28(15): 1946-1956.
  • 8Ilea D E, Whelan P F. CTex An adaptive unsuper- vised segmentation algorithm based on color-texture coher- ence. IEEE Transactions on Image Processing, 2008, 17(10): 1926-1939.
  • 9Unnikrishnan R, Pantofaru C, Hebert M. Toward objective evaluation of image segmentation algorithms. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 929-944.
  • 10王春光,刘金江,孙即祥.基于稀疏分解的心电数据压缩算法[J].中国生物医学工程学报,2008,27(1):13-17. 被引量:8

共引文献56

同被引文献41

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部