摘要
The conversion of carbon dioxide(CO_(2))into high-value added energy fuels and chemicals(CO,formate,C_(2)H_(4),etc.)through electrochemical reduction(eCO_(2)R)is a promising avenue to sustainable development.However,low selectivity,barren activity and poor stability of the electrodes hinder the large-scale application of eCO_(2)R.Herein,we reported a copper-indium-organic-framework(CuIn-MOF)based high-performance catalyst for eCO_(2)R.Elec-trochemical measurement results reveal that CuIn-MOF exhibits high Faradaic efficiency(FE)of CO and formate(300 mV,FE_(CO)=78.6%at-0.86 V vs.RHE,FE_(HCOO^(-))=48.4%at-1.16 V vs.RHE,respectively)in a broad range of current density(20.1–88.4 mA cm^(-2))with long-term stability(6 h)for eCO_(2)R in 0.5 M KHCO_(3)electrolyte solution.Specifically,through anion-regulation engineering,SO_(4)^(2-)anion precursor is more beneficial for the formic acid generation than NO_(3)^(-)anion precursor;while for SO_(4)^(2-)anion precursor,Cu plays a positive regulating role in eCO_(2)R to CO compared to In.Additionally,the high performance in a home-made eCO_(2)R reactor derives benefit from enhanced intrinsic activity and charge re-distribution can be attributed to the formation of In-doped Cu layer.
基金
The authors thank the financial support from the Fundamental Research Funds for the Central Universities(2232022D-18)
'Scientific and Technical Innovation Action Plan'Basic Research Field of Shanghai Science and Technology Committee(19JC1410500)
Shanghai Sailing Program(22YF1400700).