摘要
基于解的局部适定性,利用近似解方法讨论周期情形下一个两分量水波系统Cauchy问题解在Besov空间B,(T)×B,(T)中对初值的不一致连续依赖性.结果表明,该问题的解在对应Besov空间中的局部适定性不能只依赖压缩映像原理得到.
Based on the local well-posedness of the solution,we discussed the non-uniformly continuous dependence of the solutions to the Cauchy problem associated with the periodic water wave system on initial value in Besov spaces B,(T)×B,(T)by using the method of approximate solutions.The results show that the local well-posedness of the solutions to this problem in the corresponding Besov spaces can not be obtained only by contraction mapping principle.
作者
王海权
种鸽子
WANG Haiquan;CHONG Gezi(College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China;School of Mathematics,Northwest University,Xi’an 710127,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2022年第6期1266-1272,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11471259)
山西省基础研究计划项目(批准号:20210302124259)。