期刊文献+

基于RFE的XGBoost算法在风机叶片结冰状态评测

Application of XGBoost Algorithm Based on RFE in Icing State Evaluation of Fan Blades
下载PDF
导出
摘要 风电机组长期在低温高湿的环境中运行会造成风机叶片的结冰,该现象会严重影响风机的发电效率。且不同风机的运行数据在不同工作情况下也存在很大的差异,首先去除掉风机数据中的无效值,接着对风机叶片正常与结冰数据之间的不平衡进行下采样处理,然后利用RFE算法挑选出与叶片结冰最有关联性的几个特征,利用处理好的数据构建XGBoost算法模型,最后通过与其它算法模型做对比,验证针对风机叶片结冰预测本算法具有更高的准确性。 The long-term operation of wind turbine in low temperature and high humidity environment will cause the icing of fan blades,which will seriously affect the power generation efficiency of wind turbine.Moreover,there are great differences in the operation data of different fans under different working conditions.Firstly,the invalid values in the fan data are removed,and then the imbalance between the normal and icing data of fan blades is down sampled.Then,several features most related to blade icing are selected by RFE algorithm,and the XGBoost algorithm model is constructed by using the processed data.Finally,by comparing with other algorithm models,it is verified that the algorithm has higher accuracy for fan blade icing prediction.
作者 高博 张亚 GAO Bo;ZHANG Ya(School of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2022年第5期132-135,共4页 Journal of Jiamusi University:Natural Science Edition
关键词 XGBoost RFE 特征选择 结冰预测 XGBoost RFE feature selection icing prediction
  • 相关文献

参考文献8

二级参考文献91

  • 1张广平.循环加载下金属薄膜的裂纹萌生行为及其微观机制的研究[J].机械强度,2004,26(z1):5-7. 被引量:7
  • 2张建卓,董申,李旦.基于正负刚度并联的新型隔振系统研究[J].纳米技术与精密工程,2004,2(4):314-318. 被引量:49
  • 3朱忠奎,陈再良,王传洋.基于小波尺度图重分配的轴承瞬态特征检测与提取[J].数据采集与处理,2005,20(3):356-360. 被引量:8
  • 4任腊春,张礼达.基于模糊理论的风力机故障诊断专家系统的研究[J].流体传动与控制,2006(6):10-12. 被引量:4
  • 5Kirikera G R, Schulz M J, Sundaresan M J. Multiple damage identification on a wind turbine blade using a structural neural system[J]. Proceedings of the SPIE-The International Society for Optical Engineering , 2007(6530): 65300T-1-12.
  • 6Marin J C, Barroso A, Paris F, et al. Study of fatigue damage in wind turbine blades[J]. Engineering Failure Analysis, 2009, 16(2): 656-668.
  • 7Anastassopoulos A A, Kouroussis D A, Nikolaidis V N. Structural integrity evaluation of wind turbine blades using pattem recognition analysis on acoustic emission data[C]//The 25th European Conference on Acoustic Emission Testing(EWGAE), Prague, Czech Reptember, 2002.
  • 8Dtmegan H L. Detection of fatigue crack growth by acoustic emission techniques[J]. Materials Evaluation, 1970, 28(10): 221-223.
  • 9Ziola S. Digital signal processing of modal emission signals[J]. Journal of Acoustic Emission, 1996, 14(3/4): 12-18.
  • 10Lekou D, Vionis P, Joosse P A, et al. Full-scale blade testing enhanced by acoustic emission monitoring[C]// Proceeding of European Wind Energy Conference, Madrid, Spain, 2003.

共引文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部