期刊文献+

信息差分遗传算法反算路面结构模量 被引量:3

Pheromone Differential Genetic Algorithm for Modulus Back-calculation of Pavement Structure
下载PDF
导出
摘要 基于FWD实测弯沉盆的路面模量反算技术在路面结构质量评价中应用广泛。然而,如何利用FWD数据来反算模量既是各方研究的热点,也是难点。结合自适应信息遗传算法和差分进化算法各自的优势,提出了信息差分遗传算法来反算路面模量。工程实例表明,该新算法既能在保证较高反算精度的前提下提高反算效率,同时对传感器读数随机误差具有较强鲁棒性。 Modulus back-calculation based on FWD is widely used in the quality evaluation of pavement structure.However,how to use the FWD data is both a hot spot and difficult.In this paper,a new algorithm named pheromone differential genetic algorithm to back-calculate modulus is proposed,in which the advantages of the adaptive informational genetic algorithm and differential evolution algorithm are combined.The following results of both theory experiments and engineering examples show the new algorithm can improve the calculation efficiency with a high accuracy,and is robust even if the sensors data contain random errors.
作者 鲁云岗 李跃军 LU Yungang;LI Yuejun(Hunan Provincial Expressway Group Co.,Ltd.,Changsha,Hunan 410007,China;Hunan Communications Research Institute,Co.,Ltd.,Changsha,Hunan 410015,China)
出处 《公路工程》 2022年第5期108-112,共5页 Highway Engineering
基金 国家自然科学基金项目(51878077)。
关键词 落锤式弯沉仪 路面模量反算 自适应信息遗传算法 差分进化算法 Falling-Weight Deflectometer(FWD) modulus back-calculation of pavement structure adaptive informational genetic algorithm differential evolution algorithm
  • 相关文献

参考文献4

二级参考文献34

  • 1魏建明,孙彦,庞伟伟,张玉贞.老化对道路沥青温度敏感性的影响[J].石油沥青,2005,19(4):49-51. 被引量:2
  • 2ANDERSON M. Backcalculation of Composite Pavement Payer Moduli [ D ]. Kentucky: The University of Kentucky, 1988.
  • 3MICHELOW J. Analysis of Stresses and Displacements in N-l,ayered Elastic System Under a Load Unitbrmly Distributed on a Circular Area [ M ]. Richmond, California: Chevron Oil Research, 1963.
  • 4ULI,ITDZ P. Stresses and Strains in a Two-Dimensional Particulate Material [ C ] //74th Annual Meeting of the Transportation Research Board. Washington D. C. : TRB, 1998.
  • 5RAKESH N, JAIN A K, REDDY M A, et al. Artificial Neural Networks: Genetic Algorithm Based Model for Backealeulation of Pavement Layer Moduli [ J ]. The International Journal of Pavement Engineering, 2006, 7 (3): 221 -230.
  • 6SHARMA S, DAS A. BackcaJculation of Pavement LayerModuli from Falling Weight Detlect(,mcter Data Using an Artificial Neural Network [ J ]. Canada Journal of Civil Engineering, 2008, 35 : 57 - 66.
  • 7KAMEYAMA S, HIMENO K, KASAHARA A, et al. Backealculation of Pavement l,ayer Moduli using Genelic Algorithms [ C] //8th International Con[erence on Asphall Pavements. Washington, D. C. : University of Washington, Seattle, 1998 : 1375 - 1385.
  • 8REDDY M A, REDDY K S, PANDEY B B. Selection of Genetic Algorithm Paramctcrs for Backcah'ulation of' Pavement Moduli [ J ]. The International Journal ofPavement Engineering, 2004, 5 (2) : 81 - 90.
  • 9查旭东.基于同伦算法的模量反算问题研究[D].鹏寄.长专大学.2001.
  • 10ABBAT13STA F, ABBATTISTA N, CAPPONETFI L. An Evolutionary and Cooperative Agents Model for Optimization [ C ] //Proceedings of the IEEE International Conference on Evolutionary Computation. [ S. 1. ] : IEEE, 1995 (2) : 668 -671.

共引文献28

同被引文献32

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部