期刊文献+

基于角度约束与高斯化质量图的抓取检测方法研究

Research on grasp detection method based on angle constraint and gaussian quality map
下载PDF
导出
摘要 针对动态抓取环境中最优抓取点选取不稳定、抓取角度不准确的问题,提出一种基于角度约束与高斯化质量图的抓取检测方法.首先,将抓取角度按角度取值划分为多个类别,约束类别内角度取值范围,解决因密集标注导致的像素级标注丢失问题;再经形态学开运算方法过滤角度图中由于多个标注堆叠产生的碎片,得到标注一致性更强的抓取角度图.其次,利用高斯函数优化抓取质量图,突出可抓取区域中心位置的重要性,提升最优抓取点选取的稳定性.最后,在全卷积网络的基础上,引入抓取点和抓取方向注意力机制,提出融合注意力的生成式抓取检测网络(Attentive Generative Grasping Detection Network,AGGDN).在Jacquard仿真数据集上的实验结果表明:该方法的检测准确率能够达到94.4%,单次检测时间为11ms,能有效提升对复杂物体的抓取检测能力,且具有较好的实时性.对真实环境中不同姿态摆放的异形目标抓取实验结果表明:该方法抓取成功率能够达到88.8%,对训练集中从未出现的新目标有较强的泛化能力,能够应用于机器人抓取的相关任务. To solve the problem of unstable selection of optimal grasping point and inaccurate grasping angle in dynamic grasping environment,a grasp detection method based on angle constraint and gaussian quality map was proposed.Firstly,the grasping angle were divided into several categories according to the angle value,and the angle value range within the category was constrained to solve the pixel-level annotation loss caused by intensive annotation.morphological open operation method was used to filter the debris generated by multiple annotation stacking in the angle map,and the grasping angle map with stronger annotation consistency was obtained.Secondly,gaussian function was used to optimize the grasping quality map to highlight the importance of the center position of the grasping region and improve the stability of the selection of the optimal grasping point.Finally,based on the fully convolutional network,grasping point and grasping direction attention mechanisms are introduced,and an Attentive Generative Grasping Detection Network(AGGDN)is proposed.Experimental results on Jacquard simulation dataset show that the detection accuracy of proposed method achieves 94.4%,and the single detection time is 11 ms,which can effectively improve the grasping detecting ability of complex objects,and has good real-time performance.The experimental results of grasping irregular targets with different poses in the real environment show that,the grasping success rate of proposed method can reach 88.8%,and it has strong generalization ability to the new targets that never appear in the training set,and can be applied to the relevant tasks of robot grasping.
作者 王文俊 韩慧妍 郭磊 韩燮 李郁峰 吴伟州 WANG Wenjun;HAN Huiyan;GUO Lei;HAN Xie;LI Yufeng;WU Weizhou(School of Data Science and Technology,North University of China,Taiyuan 030051,China;Shanxi Province’s Vision Information Processing and Intelligent Robot Engineering Research Center,Taiyuan 030051,China;Institute for Civ-Mil Integration&Collaborative Innovation,North University of China,Taiyuan 030051,China)
出处 《微电子学与计算机》 2022年第11期37-44,共8页 Microelectronics & Computer
基金 山西省自然科学基金(201901D111150) 山西省应用基础研究计划项目(201901D111144) 山西省研究生创新项目(2021Y626)。
关键词 抓取图 抓取检测 全卷积网络 注意力机制 生成式抓取 grasping map grasping detection fully convolutional network attention mechanism generative grasping
  • 相关文献

参考文献3

二级参考文献6

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部