期刊文献+

Dietary Nε-(carboxymethyl)lysine affects cardiac glucose metabolism and myocardial remodeling in mice 被引量:1

下载PDF
导出
摘要 BACKGROUND Myocardial remodeling is a key factor in the progression of cardiovascular disease to the end stage.In addition to myocardial infarction or stress overload,dietary factors have recently been considered associated with myocardial remodeling.Nε-(carboxymethyl)lysine(CML)is a representative foodborne toxic product,which can be ingested via daily diet.Therefore,there is a marked need to explore the effects of dietary CML on the myocardium.AIM To explore the effects of dietary CML(dCML)on the heart.METHODS C57 BL/6 mice were divided into a control group and a dCML group.The control group and the dCML group were respectively fed a normal diet or diet supplemented with CML for 20 wk.Body weight and blood glucose were recorded every 4 wk.^(18)F-fluorodeoxyglucose(FDG)was used to trace the glucose uptake in mouse myocardium,followed by visualizing with micro-positron emission tomography(PET).Myocardial remodeling and glucose metabolism were also detected.In vitro,H9C2 cardiomyocytes were added to exogenous CML and cultured for 24 h.The effects of exogenous CML on glucose metabolism,collagen I expression,hypertrophy,and apoptosis of cardiomyocytes were analyzed.RESULTS Our results suggest that the levels of fasting blood glucose,fasting insulin,and serum CML were significantly increased after 20 wk of dCML.Micro-PET showed that ^(18)F-FDG accumulated more in the myocardium of the dCML group than in the control group.Histological staining revealed that dCML could lead to myocardial fibrosis and hypertrophy.The indexes of myocardial fibrosis,apoptosis,and hypertrophy were also increased in the dCML group,whereas the activities of glucose metabolism-related pathways and citrate synthase(CS)were significantly inhibited.In cardiomyocytes,collagen I expression and cellular size were significantly increased after the addition of exogenous CML.CML significantly promoted cellular hypertrophy and apoptosis,while pathways involved in glucose metabolism and level of Cs mRNA were significantly inhibited.CONCLUSION This study reveals that dCML alters myocardial glucose metabolism and promotes myocardial remodeling.
出处 《World Journal of Diabetes》 SCIE 2022年第11期972-985,共14页 世界糖尿病杂志(英文版)(电子版)
基金 Supported by the National Natural Science Foundation of China,No.82070455 Natural Science Foundation of Jiangsu Province,No.BK20201225 Medical Innovation Team Project of Jiangsu Province,No.CXTDA2017010 Research and Innovation Funding Project for College Students in Experimental Animal Center of Jiangsu University。
  • 相关文献

参考文献1

二级参考文献3

共引文献22

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部