摘要
频谱分解技术是一种提高分辨率的地震资料处理技术,在研究薄地层厚度和地质体的不连续性成像、成图方面具有较强的优势。不同于常规的技术方法如反Q、谱白化等,它既能改善地震信号的振幅谱,也能改善信号的相位谱。通过离散傅立叶变换将地震信号由时间域转换到频率域,分析不同频率的振幅、相位响应特征,能够改善小尺度构造,如缝洞、裂隙、薄互层等地震信号的成像能力。频谱分解技术有多种时频变换方法及其技术特点,从S变换方法入手,在地震资料精细处理中,得到了比常规“三高”地震成果更高分辨率的成像。在地震资料精细处理中,准确刻画出如煤矿巷道形状位置、油田储油层至地表间的裂隙发育情况等小尺度异常,表明频谱分解技术在地震资料处理中,对提高成像分辨率,精细刻画小尺度异常方面具有较强的识别能力。
Spectrum decomposition technology is a seismic data processing technology to improve resolution.It has strong advantages in studying the thickness of thin strata and discontinuity imaging and mapping of geological bodies.Different from conventional technical methods such as inverse Q,spectrum whitening,etc.,it can improve both the amplitude spectrum and the phase spectrum of the seismic signal.The seismic signal is converted from the time domain to the frequency domain by discrete Fourier transform,and the amplitude and phase response characteristics of different frequencies can be analyzed,which can improve the imaging ability of small-scale structures,such as fracture caves,fissures,and thin interbeds.Spectrum decomposition technology has various time-frequency transformation methods and its technical characteristics.This paper starts with the S-transform method.In the fine processing of seismic data,higher resolution imaging than conventional “three high” seismic results is obtained.In the fine processing of seismic data,small-scale anomalies such as the shape and position of the coal mine roadway,the development of fractures between the oil reservoir and the surface of the oilfield and other small-scale anomalies are accurately depicted,indicating that the spectrum decomposition technology in the processing of seismic data can improve the imaging resolution and finely describe small-scale anomalies.It has a strong ability to identify scale anomalies.
作者
杨广宪
龙御
Yang Guangxian;Long Yu(Research Institute of Coal Geophysical Exploration,CNACG,Zhuozhou,Hebei 072750)
出处
《中国煤炭地质》
2022年第10期71-76,共6页
Coal Geology of China
基金
华阳新材料科技集团科研项目(YM18051-45)。
关键词
频谱分解
S变换
小波变换
裂隙通道
小尺度目标体
spectrum decomposition
S-transform
wavelet transform
fissure channels
small-scale target body