摘要
In recent years,online ride-hailing services have emerged as an important component of urban transportation system,which not only provide significant ease for residents’travel activities,but also shape new travel behavior and diversify urban mobility patterns.This study provides a thorough review of machine-learning-based methodologies for on-demand ride-hailing services.The importance of on-demand ride-hailing services in the spatiotemporal dynamics of urban traffic is first highlighted,with machine-learning-based macro-level ride-hailing research demonstrating its value in guiding the design,planning,operation,and control of urban intelligent transportation systems.Then,the research on travel behavior from the perspective of individual mobility patterns,including carpooling behavior and modal choice behavior,is summarized.In addition,existing studies on order matching and vehicle dispatching strategies,which are among the most important components of on-line ridehailing systems,are collected and summarized.Finally,some of the critical challenges and opportunities in ridehailing services are discussed.
基金
the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.101025896.