期刊文献+

基于深度学习的“药物-靶点”亲和力预测方法设计

Drug-target affinity prediction based on deep learning
下载PDF
导出
摘要 目的:构建一种基于深度神经网络的“药物-靶点”亲和力预测方法。方法:先对拟定药物进行独热编码,并使用预训练语言表征模型对靶蛋白进行编码,以捕获氨基酸序列中的重要信息,然后设计2个独立的卷积神经网络,通过4个全连接层来预测“药物-靶点”的亲和力。最后在Davis激酶结合亲和力数据集和KIBA大规模激酶抑制剂生物活性数据集上验证本方法的性能,并将实验结果与KronRLS、SimBoost、DeepDTA算法结果进行比较。结果:相较于KronRLS、SimBoost、DeepDTA算法,本方法在Davis激酶结合亲和力数据集和KIBA大规模激酶抑制剂生物活性数据集上均获得了最高的一致性指数和最低的均方误差值。结论:采用双向语言模型对靶蛋白进行编码后再进行深度学习,可以提高“药物-靶点”亲和力预测的准确度。 Objective To establish a method of predicting the drug-target affinity based on deep neural network.Methods First,the proposed drugs were encoded by One-Hot Encoding,and the important information of amino acid sequence was obtained by bidirectional long short-term memory language model.Second,two convolution neural network were designed,predicting the affinity of drug-target by four fully connected layer.Finally,the accuracy of the proposed method was validated on Davis dataset and KIBA dataset,and the experimental results were compared with those of KronRLS,SimBoost and DeepDTA.Results Compared with KronRLS,SimBoost and DeepDTA,this method obtained the highest concordance index and the lowest mean squared error on Davis dataset and KIBA dataset.Conclusions Using bidirectional language model to encode target protein before deep learning could increase the accuracy of predicting drug-target affinity.
作者 李添添 王俊杰 LI Tian-tian;WANG Jun-jie(Editioral Department,Jiangsu Province Official Hospital,Nanjing 210024,Jiangsu Province,China;School of Biomedical Engineering and Informatics,Nanjing Medical University,Nanjing 211166,Jiangsu Province,China)
出处 《中华医学图书情报杂志》 CAS 2022年第3期34-39,共6页 Chinese Journal of Medical Library and Information Science
基金 国家自然科学基金青年基金项目“多粒度多任务化合物-蛋白质相互作用预测方法研究”(62102191)。
关键词 深度学习 药物-靶点 亲和力 预测方法 Deep Learning Drug-Target Affinity Prediction
  • 相关文献

参考文献3

二级参考文献42

  • 1Sleno L, Emili A. Proteomic methods for drug target discovery. Curt Opin Chem Biol, 2008, 12(1): 46-54.
  • 2Maglott D, Ostell J, Pruitt K D, et ol. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res, 2007, 35(Database issue): D26 D31.
  • 3Gao Z, Li H, Zhang H, et ol. PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics, 2008, 9:104.
  • 4Rhodes D R, Kalyana-Sundaram S, Mahavisno V, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18 000 cancer gene expression profiles. Neoplasia, 2007, 9(2): 166-180.
  • 5Le Novre N, Bornstein B, Broicher A, et al. BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research, 2006, 34(Database issue): D689-D691.
  • 6Olivier B, Snoep J. Web-based kinetic modelling using JWS Online. Bioinformatics, 2004, 20(13): 2143-2144.
  • 7Ricke D O, Wang S, Cai R, et al. Genomic approaches to drug discovery. Curr Opin Chem Biol, 2006, 10(4): 303-308.
  • 8Conde-Pueyo N, Mtmteanu A,Sole R V, etal. Human synthetic lethal inference as potential anti-cancer target gene detection. BMC Syst Biol, 2009, 3:116.
  • 9Hu G, Agarwal P. Human disease-drug network based on genomic expression profiles. PLoS One, 2009, 4(8): e6536.
  • 10Subramanian A, Kuehn H, Gould J, et al. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics, 2007, 23(23): 3251-3253.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部