摘要
针对重新训练模型数据收集成本较高、模型鲁棒性较低等难点,在PP-OCRv3模型的基础上,对后处理方法进行优化改进,并提出了适用于钢铁行业场景的车牌模型训练方法。在中国城市停车数据集及钢厂场景数据集中进行实验,实验结果证明提出的车牌识别算法部署在边缘设备上时能够保证推理时间小于200 ms的同时取得99.6%的识别精度,足以满足钢铁行业场景中车牌识别的精度和性能需求。
In view of these difficulties,which the self-made license plate in the steel industry cannot be recognized by the general license plate recognition algorithm,and the data collection cost of the retraining model is high and the robustness is low,the post-processing method is optimized and improved on the basis of the PP-OCRv3 model,and the model training method which is suitable for steel industry scenarios is proposed.Experiments are carried out on the CCPD and the steel factory scene datasets.The experimental results show that when deployed on edge devices,the inference time can be guaranteed to be less than 200 milliseconds and the recognition accuracy of 97.6%can be achieved,which is enough to meet the accuracy and performance requirements of license plate recognition in steel industry scenarios.
出处
《信息技术与标准化》
2022年第11期68-72,共5页
Information Technology & Standardization
基金
上海市科学技术委员会科研计划项目之“AI+交通主动管控分析基础平台应用示范”,项目编号:19DZ1209005。
关键词
车牌识别
钢铁行业
边缘推理
多阶段推理
云边协同
license plate recognition
steel industry
edge computing
multi-stage inference
edge-cloud cooperation