摘要
无机交流电致发光(ACEL)器件具有柔性、制备简单和发光稳定的特点,在智能发光、柔性显示以及背光电子器件等领域具有广泛的应用。本研究以掺铜硫化锌(ZnS:Cu)为发光层,采用丝网印刷方式,在不同基材上制备得到顶部发光结构(TES)的柔性无机交流电致发光器件。通过X射线衍射、X射线光电子能谱、电压-亮度曲线、色坐标和发光光谱等表征对发光层的组成、结构以及在PET、PE、棉布、纸张等不同柔性基材上的发光性能进行测试。结果表明,采用TES的ACEL器件在PET基底上最大发光亮度为70cd/m^(2),与底部发光结构(BES)的器件相比,具有不受透明导电基底束缚的优点,有助于拓展柔性电致发光器件的实际应用范围,在未来电致发光器件的开发过程中发挥重要作用。
Inorganic alternating current electroluminescence(ACEL) devices have been widely used in intelligent light-emitting, flexible display and backlight electronic devices due to their flexibility, simple fabrication and stable luminescence. In this study, flexible inorganic electroluminescent devices with top-emission structure(TES) were fabricated on different substrates by screen printing with copper doped zinc sulfide(ZnS:Cu) as luminescent layer.X-ray diffraction, X-ray photoelectron spectroscopy, Luminescence-Voltage curve, color coordinate and luminescence spectrum were used to characterize the composition and structure of the luminescent layer and its luminescent properties of ACEL on different substrates such as PET, PE, cotton and paper were analyzed. The results showed that the maximum luminescence of ACEL devices using TES on PET substrate is 70cd/m^(2). Compared with ACEL devices with bottom-emission structure(BES), ACEL devices with TES are not bound by transparent conductive substrate,which is helpful to expand the practical application range of flexible electroluminescent devices and will play an important role in the development of electroluminescent devices in the future.
作者
刘艺彬
孙志成
张文官
陈揭
王美琳
问金月
LIU Yi-bin;SUN Zhi-cheng;ZHANG Wen-guan;CHEN Jie;WANG Mei-lin;WEN Jin-yue(School of Printing and Packaging Engineering,Beijing Institute of Graphic Communication,Beijing 102600,China)
出处
《数字印刷》
CAS
北大核心
2022年第5期105-111,共7页
Digital Printing
基金
北京市自然科学基金——市教委联合资助项目(No.KZ201910015016)
国家自然科学基金(No.22278037)
北京市自然科学基金面上项目(No.4202023)
北京印刷学院校级项目(No.Ec202004)。
关键词
无机交流电致发光
掺铜硫化锌
丝网印刷
顶部发光结构
Inorganic alternating current electroluminescence
Copper doped zinc sulfide
Screen printing
Topemission structure