摘要
为了避免施工阶段工程变更、工程材料替换等问题导致项目工程造价误差增大,文章提出基于人工神经网络的新能源发电项目工程造价控制方法。按照新能源发电项目工程的实际情况,文章选取了包含主体结构、粗装结构和安装结构三类的10个项目工程造价指标。将指标参量输入人工神经网络中,利用隐含层的激励函数计算出对应的造价,根据输出层结果与预期造价之间的差值,对人工神经网络的权值进行适应性调整,直至输出的造价满足预期造价要求,从而实现对新能源发电项目工程造价的控制。结果表明,文章方法可以确保工程的实际造价与预期造价具有较高的一致性。
In order to avoid the increase o£project cost error caused by engineering changes and replacement of engineering materials in the construction stage,this paper proposes a new energy power generation project cost control method based on artificial neural network.According to the actual situation of new energy power generation projects,10 project cost indexes including main structure,rough structure and installation structure are selected.Input the index parameters into the artificial neural network,calculate the corresponding cost by using the incentive function o£the hidden layer?and adjust the weights o£the artificial neural network adaptively according to the difference between the output layer results and the expected cost until the output cost meets the expected cost requirements' and use it to control the project cost of the new energy power generation project.The results show that the design control method can ensure that the actual cost of the project is consistent with the expected cost.
作者
贺绮瑶
HE Qiyao(China Power Construction New Energy Group Co.,Ltd.,Qinghai Branch,Xining 810000,China)
出处
《计算机应用文摘》
2022年第21期98-100,共3页
Chinese Journal of Computer Application
关键词
人工神经网络
新能源发电项目
工程造价
工程造价指标
激励函数
权值
artificial neural network
new energy power generation project
project cost
project cost index
excitation function
weight