摘要
针对供应链金融模式下中小企业的信用风险控制问题,提出了一种面向高维和不平衡数据的信用风险预测模型。首先,基于Pearson-XGBoost两阶段特征选择建立供应链金融信用评价指标体系;其次,通过改进的NM-SMOTE算法对数据集进行平衡化;最后,利用Focal loss函数对XGBoost算法改进,并通过改进的粒子群算法进行优化,从而建立最终的信用评价模型。通过实验结果表明,提出的INS-IPSO-FLXGBoost模型对于中小企业具有更好的预测效果,可以更有效地识别风险企业。
Aiming at the credit risk control of small and medium-sized enterprises in the supply chain finance model,this paper proposed a credit risk prediction model for high dimensional and unbalanced data.Firstly,based on the Pearson-XGBoost two-stage feature selection,this model established the supply chain financial credit evaluation index system.Secondly,with the help of the improved NM-SMOTE algorithm,it made the dataset balanced.Finally,it used the Focal loss function to improve the XGBoost algorithm,and optimized it by the improved particle swarm algorithm,thus established the final credit evaluation mo-del.The experimental results show that the INS-IPSO-FLXGBoost model has a better prediction effect for small and medium-sized enterprises,and can identify risky enterprises more effectively.
作者
顾天下
刘勤明
Gu Tianxia;Liu Qinming(Business School, University of Shanghai for Science & Technology)
出处
《计算机应用研究》
CSCD
北大核心
2022年第11期3396-3401,共6页
Application Research of Computers
基金
国家自然科学基金资助项目(71632008,71840003)
上海市自然科学基金资助项目(19ZR1435600)
教育部人文社会科学研究规划基金资助项目(20YJAZH068)
上海理工大学科技发展项目(2020KJFZ038)
2020年上海理工大学大学生创新创业训练计划资助项目(SH2020067)。
关键词
信用评价
供应链金融
高维
不平衡
中小企业
credit evaluation
supply chain finance
high dimension
imbalance
small and medium-sized enterprises