期刊文献+

基于扩展有限元的疲劳裂纹扩展分析 被引量:4

Fatigue crack propagation analysis based on extended finite element method
下载PDF
导出
摘要 针对结构板裂纹扩展问题,基于Abaqus的扩展有限元法,使用3种方法计算单边裂纹和中心裂纹的静态应力强度因子,发现相互作用积分法结果更加精确,误差在2%以内。采用相互作用积分法计算裂纹扩展过程的动态应力强度因子,误差在3%以内,结合低周疲劳分析,对孔边裂纹的剩余寿命进行预测,与试验结果相比,误差为3.8%,并且疲劳裂纹扩展稳定阶段的试验结果与扩展有限元分析基本一致,证明了此方法的准确性和可行性。因此,该方法为疲劳裂纹扩展过程中动态应力强度因子计算和剩余寿命预测提供可靠的参考依据。 For the crack propagation problem of structural plate,based on the extended finite element method of Abaqus,three methods were used to calculate the static stress intensity factor of the specimens with unilateral crack and the central crack respectively.The results showed that the interaction integral method was more accurate and the error was within 2%.The interaction integral method was adopted to calculate the dynamic stress intensity factor during the crack propagation process,and the error was less than 3%.Combined with the low cycle fatigue analysis,the residual life of the specimen with hole edge crack was predicted,and the error was 5.9%by comparing with the test results.In addition,the test results in the stable stage of fatigue crack propagation are basically consistent with the finite element analysis,which proved the accuracy and feasibility of this method.Therefore,this method could provide reliable reference for calculating dynamic stress intensity factor and predicting residual life during the process of fatigue crack propagation.
作者 张功学 史少斌 晋会锦 刘苗 ZHANG Gong-xue;SHI Shao-bin;JIN Hui-jin;LIU Miao(School of Mechanical and Electrical Engineering,Shanxi University of Science and Technology,Xi′an 710021,China)
出处 《舰船科学技术》 北大核心 2022年第20期29-34,共6页 Ship Science and Technology
基金 陕西省教育厅自然科学专项项目(21JK0534,20JK0547) 陕西省自然科学基础研究计划项目(2022JQ-449,2021JQ-554)。
关键词 扩展有限元 应力强度因子 相互作用积分法 剩余寿命 extended finite element stress intensity factor interaction integration method residual life
  • 相关文献

参考文献6

二级参考文献55

  • 1江守燕,杜成斌,顾冲时,陈小翠.求解双材料界面裂纹应力强度因子的扩展有限元法[J].工程力学,2015,32(3):22-27. 被引量:15
  • 2Xing Li Xuemei You.STRESS INTENSITY FACTORS FOR A FINITE PLATE WITH AN INCLINED CRACK BY BOUNDARY COLLOCATION[J].Analysis in Theory and Applications,2005,21(3):258-265. 被引量:3
  • 3Ortiz M,Leroy Y,Needleman A. A finite element method for localized failure analysis[J]. Computer Methods in Applied Mechanics and Engineering,1987,61:189-214.
  • 4Belytschko T,Fish J,Engelmann B E. A finite element with embedded localization zones[J]. Computer Methods in Applied Mechanics and Engineering,1988,70:59-89.
  • 5Dvorkin E N,Cuitino A M,Gioia G. Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions[J]. Computer Methods in Applied Mechanics and Engineering,1990,90:829-844.
  • 6Lotfi H R,Shing P B. Embedded representations of fracture in concrete with mixed finite elements[J]. International Journal for Numerical Methods in Engineering,1995,38:1 307-1 325.
  • 7Simo J C,Oliver J,Armero F. An analysis of strong discontinuities induced by strain softening in rate-independent inelastic of solids[J]. Computational Mechanics,1993,12:277-296.
  • 8Bolzon G,Corigliano A. Finite element with embedded displacement discontinuity:a generalized variable formulation[J]. International Journal for Numerical Methods in Engineering,2000,49(10): 1 227-1 266.
  • 9Camacho G T,Ortiz M. Computational modeling of impact damage in brittle materials[J]. International Journal of Solids and Structures. 1996,33:2 899-2 938.
  • 10Jirasek M. Comparative study on finite elements with embedded discontinuities[J]. Computer Methods in Applied Mechanics and Engineering,2000,188:307-330.

共引文献67

同被引文献40

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部