期刊文献+

基于卷积神经网络的路面坑槽与拥包病害识别

Identification Method of Pavement Potholes and Upheavals Disease Based on Convolutional Neural Networks
下载PDF
导出
摘要 坑槽与拥包作为城市沥青路面的主要损坏类型,若不及时进行修复,会造成路面的结构性破坏,缩短道路的使用寿命。为了进一步提高路面坑槽与拥包的识别精度与效率,采用三维数据图像作为训练样本,提出新的卷积神经网络病害识别模型;采用激光面扫描技术获取高精度沥青路面三维数据,开发道路坑槽与拥包分类模型CNN 1。结果表明:CNN 1模型能够显著提高坑槽与拥包病害分类识别准确率和精确率,有效地提高了城市道路中坑槽与拥包病害的检测及分析效率。 As the dominating damage types of asphalt pavement,potholes and upheavals are likely to further develop and cause structural damage to the pavement,shortening the life of the road.In order to improve the recognition accuracy and efficiency of pavement potholes and upheavals,a new convolution neural network potholes and upheavals disease identification model is proposed by using 3-dimensional data images as training samples.Using the laser surface scanning technology to obtain the 3 Dimensional high-precision pavement data of the asphalt pavement to establish the classification model CNN 1.The results show that CNN 1 model can not only significantly improve the classification and recognition accuracy of pothole and upheaval but also effectively improves the detection efficiency and accuracy of pavement potholes and upheavals.
作者 谢程波 常力夫 薛增光 XIE CHeng-bo;CHANG Li-fu;XUE Zeng-guang(Zhejiang Institute of Communications,Hangzhou 311112,China;Zhejiang Sci-Tech University,Hangzhou 310000,China)
出处 《浙江交通职业技术学院学报》 CAS 2022年第3期27-32,共6页 Journal of Zhejiang Institute of Communications
关键词 道路工程 路面病害识别 卷积神经网络 路面检测 坑槽与拥包病害 road engineering pavement disease identification convolutional neural networks pavement inspection pothole and upheaval disease
  • 相关文献

参考文献5

二级参考文献26

  • 1李春雷,张天,季晓东.沥青路面坑槽修补工艺的研究[J].筑路机械与施工机械化,2006,23(8):34-35. 被引量:21
  • 2沈金安.沥青及沥青混合料路用性能.北京:人民交通出版社,2006.
  • 3GB50092-96.沥青路面施工及验收规范.[S].,..
  • 4JTGD50-2006,公路沥青路面设计规范
  • 5K.C.P. Wang.Design and implementation of automated systems for pavement surface distress survey. ASCE Journal of Infrastructure Systems . 2000
  • 6B. Herr.Calibration and Operation of Pavement Profile Scanners. . 2001
  • 7B. Herr.PSI Current Technology Overview. . 2009
  • 8D.H. Mendelsohn.Automated Pavement Crack Detec- tion: An Assessment of Leading Technologies. Pro- ceedings of the Second North American Conference on Managing Pavements . 1987
  • 9D. Crevier,Daniel.Computer Vision and Artificial Intel- ligence. . 1997
  • 10ASSHTO.Standard Practice for Collecting Images of Pavement Surfaces for Distress Detection. AASHTO Designation . 2010

共引文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部