期刊文献+

Neursafe-FL:A Reliable,Efficient,Easy-to-Use Federated Learning Framework 被引量:1

下载PDF
导出
摘要 Federated learning(FL) has developed rapidly in recent years as a privacy-preserving machine learning method,and it has been gradually applied to key areas involving privacy and security such as finance,medical care,and government affairs.However,the current solutions to FL rarely consider the problem of migration from centralized learning to federated learning,resulting in a high practical threshold for federated learning and low usability.Therefore,we introduce a reliable,efficient,and easy-to-use federated learning framework named Neursafe-FL.Based on the unified application program interface(API),the framework is not only compatible with mainstream machine learning frameworks,such as Tensorflow and Pytorch,but also supports further extensions,which can preserve the programming style of the original framework to lower the threshold of FL.At the same time,the design of componentization,modularization,and standardized interface makes the framework highly extensible,which meets the needs of customized requirements and FL evolution in the future.Neursafe-FL is already on Github as an open-source project^(1).
出处 《ZTE Communications》 2022年第3期43-53,共11页 中兴通讯技术(英文版)
  • 相关文献

参考文献1

共引文献70

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部