期刊文献+

非凸张量多视图子空间聚类 被引量:1

Nonconvex tensor multi-view subspace clustering
下载PDF
导出
摘要 为了探索非凸方法在多视图聚类方面的应用,基于非凸替换函数和子空间学习,提出非凸张量多视图子空间聚类算法.该算法不仅对多视图数据进行自表示学习来达到学习低维子空间的目的,而且采用带有旋转的张量结构对张量的高阶关联进行挖掘.同时,使用非凸函数替换和广义奇异值算子进行张量最小化问题的求解,从而实现对张量秩的近似.最后基于联合优化所得关联/仿射矩阵实现聚类操作,在不同类型的多视图数据集上的大量实验验证了该方法的聚类效果. To explore the application of non convex methods for multi-view clustering,this paper proposes a nonconvex tensor multi-view subspace clustering algorithm based on nonconvex substitution functions and subspace learning.The algorithm first performs self-representation attribute learning on multi-view data to achieve dimensionality reduction.Secondly,the tensor structure with rotation is used to mine the spatial association of the tensor.At the same time,the tensor minimization problem is solved using nonconvex function substitution and generalized singular value operator to achieve an approximation of the tensor rank.Finally,the learned correlation matrix is used to implement the clustering operation.Extensive experiments on different types of multi-view datasets validate the clustering effect of the method.
作者 洪振宁 苏雅茹 HONG Zhenning;SU Yaru(College of Computer and Data Science,Fuzhou University,Fuzhou,Fujian 350108,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2022年第6期737-741,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2020J01502)。
关键词 多视图聚类 子空间学习 张量约束 非凸函数 multi-view clustering subspace learning tensor constraint nonconvex function
  • 相关文献

参考文献2

二级参考文献32

  • 1Jain A, Murty M, Flynn P. Data clustering.. A Review[J]. ACM Computing Surveys, 1999,31 (3) : 264-323.
  • 2Fiedler M. Algebraic connectivity of graphs. Czech, Math. J. , 1973,23: 298-305.
  • 3Malik J,Belongie S,Leung T, et al. Contour and texture analysis for image segmentation In Perceptual Organization for Artificial Vision Systems. Kluwer, 2000.
  • 4Weiss Y. Segmentation using eigenvectors: A unified view//International Conference on Computer Vision 1999.
  • 5Shi J,Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) : 888-905.
  • 6Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation [J]. IEEE Trans on PAMI,1993, 15(11):1101-1113.
  • 7Hagen L, Kahng A 13. New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Computer-Aided Design, 1992,11 (9) : 1074-1085.
  • 8Sarkar S, Soundararajan P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22(5) : 504- 525.
  • 9Ding C, He X, Zha H, et al. Spectral Min Max cut for Graph Partitioning and Data Clustering[C]//Proc. of the IEEE Intl Conf. on Data Mining. 2001 : 107-114.
  • 10Meila M , Xu L. Multiway cuts and spectral clustering. U. Washington Tech Report. 2003.

共引文献267

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部