期刊文献+

基于矩阵不等式的电力系统混沌振荡鲁棒模糊控制研究

Research on Robust Fuzzy Control of Power System Chaotic Oscillation Based on Matrix Inequality
下载PDF
导出
摘要 互联电力系统正常工作时因增减负荷等引起的混沌振荡是危害电力系统安全稳定运行的重要因素。通过系统相图以及转子角度和角频率的时域状态轨迹图揭露了二阶电力系统混沌振荡的特性。采用T-S模糊方法对二阶电力系统进行模糊建模,并进一步基于Lyapunov稳定性定理,设计了相应的鲁棒模糊控制器。施加控制后,系统的混沌振荡得到有效抑制,转子角度和角频率在经过短暂的超调和衰减过程后恢复到稳定状态,仿真计算结果表明所设计的控制器具有良好的鲁棒性。研究结果可为保障互联电力系统的安全稳定运行提供理论指导。 The chaotic oscillation caused by increasing and reducing load in the normal operation of the interconnected power system is an important cause for the safe and stable operation of power system.The chaotic oscillation characteristics of the second-order power system are revealed by the phase diagram of the system and the time-domain state trajectory of the rotor angle and angular frequency.The T-S fuzzy method is used to model the second-order power system,and the corresponding robust fuzzy controller is designed based on Lyapunov stability theorem.After applying control,the chaotic oscillation of the system is effectively suppressed,and the rotor angle and angular frequency return to a stable state after a brief overshoot and decay process.Simulation results show that the designed controller has good robustness.The research results can provide theoretical guidance for ensuring the safe and stable operation of the interconnected power system.
作者 叶剑涛 李宾宾 陈艺 朱胜龙 秦少瑞 薛建议 YE Jiantao;LI Binbin;CHEN Yi;ZHU Shenglong;QIN Shaorui;XUE Jianyi(Electric Power Research Institute of State Grid Anhui Electric Power Co.,Ltd.,Hefei 230601,China;Hefei University of Technology,Hefei 230009,China)
出处 《电工技术》 2022年第20期1-3,6,共4页 Electric Engineering
基金 国家自然科学基金项目(编号51377036)。
关键词 电力系统 混沌振荡 T-S模糊 控制 鲁棒性 power system chaotic oscillation T-S fuzzy model control robustness
  • 相关文献

参考文献5

二级参考文献149

  • 1薛禹胜.时空协调的大停电防御框架 (一)从孤立防线到综合防御[J].电力系统自动化,2006,30(1):8-16. 被引量:285
  • 2肖建,白裔峰,于龙.模糊系统结构辨识综述[J].西南交通大学学报,2006,41(2):135-142. 被引量:32
  • 3ZADEH L A. Fuzzy sets[ J]. Information and Control, 1965, 8(3):338-356.
  • 4FENG G. A survey on analysis and design of model- based fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(5): 676-697.
  • 5FENG G. Analysis and synthesis of fuzzy control systems: a model-based approach[M]. [S. 1. 1: CRC Press, 2010: 1-52.
  • 6LAM H K, LEUNG F H F. Stability analysis of fuzzy- model-based control systems: linear-matrix-inequality approach[M]. IS. 1. ]: Springer, 2011: 1-22.
  • 7TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modelling and control[J]. IEEE Transactions on Systems, Man and Cybernetics, 1985, 15(1): 116-132.
  • 8SUGENO M, KANG G T. Structure identification of fuzzy model[J]. Fuzzy Sets and Systems, 1988, 28(1) : 15-33.
  • 9CAO S G, REES N W, FENG G. Analysis and design of fuzzy control systems using dynamic fuzzy global models[ J]. Fuzzy Sets and Systems, 1995,75: 47-62.
  • 10CAO S G, REES N W, FENG G. Analysis and design for a class of complex control systems, part | : fuzzy modeling and identification[ J]. Automatica, 1997, 33: 1017-1028.

共引文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部