期刊文献+

人造石墨加工性能研究 被引量:2

Research on correlation of artificial graphite processing performance
下载PDF
导出
摘要 选取不同物理指标(如吸油值、粒度、比表面积、振实密度)的人造石墨,采用锂离子电池常规湿法和干法配料工艺配制浆料,并涂布干燥得到负极片。然后对浆料和负极片进行粘度、细度、过筛时间、流变、压实密度、反弹等加工性能测试。结果表明:吸油值越大,粒度分布越广,比表面积越大,振实密度越小,浆料的流变性能越差;湿法配料工艺更容易获得分散网络稳定的浆料,干法配料工艺制得的合格浆料过筛时间短,但在高剪切力下会破坏浆料的分散网络,引起浆料沉降。该研究成果对人造石墨类材料的制造工艺改善和锂离子电池制造过程具有重要指导意义。 Artificial graphite with different physical indexes(such as oil absorption value,particle size,specific surface area,tap density)was selected,and the slurry was prepared by conventional wet and dry batching technology of lithium ion battery,and the negative electrode sheet was obtained by coating and drying.Then the slurry and the negative electrode were tested for viscosity,fineness,sieving time,rheology,compaction,rebound and other processing properties.The results show that the larger the oil absorption value,the wider the particle size distribution,the larger the specific surface area,the smaller the tapping,and the worse the rheological properties of the slurry;the wet batching process is easier to obtain a slurry with a stable dispersion network,and the sieving time of the qualified slurry prepared by the dry batching process is short,but the dispersive mesh of the slurry will be destroyed under high shearing force,and the slurry will precipitate.The research results have important guiding significance for the improvement of the manufacturing process of artificial graphite materials and the manufacturing process of lithiumion batteries.
作者 张彩霞 ZHANG Caixia(Shenzhen BTR New Materials Group Co.,Ltd.,Shenzhen Guangdong 518106,China)
出处 《电源技术》 CAS 北大核心 2022年第11期1256-1260,共5页 Chinese Journal of Power Sources
关键词 人造石墨 吸油值 粒度 比表面积 振实密度 湿法 干法 artificial graphite oil absorption value particle size specific surface area tap density wet method dry method
  • 相关文献

参考文献5

二级参考文献21

  • 1陈荣.高纯石墨碳材制备锂离子电池负极材料工艺分析[J].现代冶金,2013,41(6):26-28. 被引量:1
  • 2SATO K,NOGUCHI M,DEMACHI A, et al.A mechanism of lithium storage in disordered carbons[J]. Science, 1994,264:556.
  • 3ROH Y B, JEONG K M, DAM K,et al. Unique charge/discharge properties of carbon materials with different structures [J]. J Power sources, 1997,68:271-276.
  • 4SIMON B,FLANDROIS S,GUERIN K,et al.On the choice of graphite for lithium ion batteries [J]. J Power sources, 1999,81/82: 312-316.
  • 5FLANDROIS S, FEBRIER A, PHILIPPE B, et al. Carbon anode for a lithium rechargeable electrochemical cell and a process for its production: US,5554462 [P]. 1966.9.10.
  • 6KATIA G, ANNIE F B, SERGE F, et al. Effect of graphite crystal structure on lithium electrochemical intercalation [J]. J Electrochemical Society, 1999, 146(10):3660-3665.
  • 7MARKOVSKY B, MIKHAIL D, AURBACH D. The basic electro analytical behavior of practical graphite-lithium intercalation electrode [J]. Electrochemical Acta, 1998,44(16/17):2287-2304.
  • 8WAN C S, APPLEBY A J. Electrochemical impedance study of initial lithium ion intercalation into graphite powders [J]. Electrochemical Acta, 2001, 46:1793-1813.
  • 9JIANG W, NADEAU G, ZAGHIB K, et al. Thermal analysis of the oxidation of natural graphite-effect of particle size [J].Thermo-chimica Acta,2000, 351:85-93.
  • 10KOLTYPIN M, COHEN Y S. The study of lithium insertiondeinsertion processes into composite graphite electrodes by in situ atomic force microscopy (AFM) [J]. Electrochemistry Communications, 2002, 4: 17-23.

共引文献22

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部