期刊文献+

LB-315锂离子电解液的热稳定性研究

Study on thermal stability of LB-315 lithium ion electrolyte
下载PDF
导出
摘要 为研究LB-315锂离子电解液的热稳定性,采用TG-DTG技术研究了由LiPF_(6)、碳酸乙烯酯、碳酸甲乙酯、碳酸二甲酯和氟代碳酸乙烯酯构成的复合电解液的热行为。测定了不同升温速率(5、10和30℃/min)下LB-315的分解峰温,使用Kissinger方法计算了分峰后电解液中LiPF_(6)热分解反应的表观活化能和指前因子。采用热力学方程计算了LiPF_(6)分解反应的活化熵(ΔS≠)、活化焓(ΔH≠)和活化吉布斯自由能(ΔG≠)。结果表明LiPF_(6)在小于100℃区域对热较为稳定,其热分解反应的ΔS≠、ΔH≠和ΔG≠分别为-135.48 J/(K·mol)、39.6和95.60 kJ/mol。 In order to study the thermal stability of LB-315 lithium ion electrolyte,the thermal behavior of the composite electrolyte composed of LiPF_(6),ethylene carbonate,ethyl methyl carbonate,dimethyl carbonate and fluoroethylene carbonate was studied using TG-DTG technology.The decomposition peak temperature of LB-315 was measured at different heating rates(5,10 and 30℃/min),and the apparent activation energy and pre-exponential factor of LiPF_(6) thermal decomposition reaction in the electrolyte after peaking were calculated using Kissinger's method.The activation entropy(ΔS≠),activation enthalpy(ΔH≠)and activation Gibbs free energy(DG≠)of LiPF_(6) decomposition reaction were calculated using thermodynamic equations.The results show that ΔS≠,ΔH≠and ΔG≠of LiPF_(6) are-135.48 J/(K·mol),39.6 and 95.60 kJ/mol,respectively.
作者 江振宇 鲁伊恒 吴跃旭 JIANG Zhenyu;LU Yiheng;WU Yuexu(School of Chemical Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处 《电源技术》 CAS 北大核心 2022年第11期1265-1269,共5页 Chinese Journal of Power Sources
基金 安徽省大学生创新创业计划项目(S201910361175)
关键词 锂离子电解液 LB-315 六氟磷酸锂 热稳定性 热力学参数 lithium ion electrolyte LB-315 lithium hexafluorophosphate thermal stability thermodynamic parameters
  • 相关文献

参考文献5

二级参考文献87

  • 1[1]Kennedy B.,Patterson D.,and Camilleri S.,Use of lithium-ion batteries in electric vehicles.J.Power Sources,2000,90:156.
  • 2[2]Hyung Y.E.,Moon S.I.,Yum D.H.,et al.,Fabrication and evaluation of 100 Ah cylindrical lithium ion battery for electric vehicle applications.J.Power Sources,1999,81-82:842.
  • 3[3]Spotnitza R.,and Franklin J.,Abuse behavior of high-power,lithium-ion cells.J.Power Sources,2003,113:81.
  • 4[4]Biensan Ph.,Simon B.,Peres J.P.,et al.,On safety of lithium-ion cells.J.Power Sources,1999,81-82:906.
  • 5[5]Tobishima S.,Takei K.,Sakurai Y.,et al.,Lithium ion cell safety.J.Power Sources,2000,90:188.
  • 6[6]Wang Q.S.,Sun J.H.,Yao X.L.,et al.,4-isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte.Electrochem.Solid-State Lett.,2005,8(9):A467.
  • 7[7]Wang Q.S.,Sun J.H.,Yao X.L.,et al.,Thermal behavior of lithiated graphite with electrolyte in lithium ion batteries.J.Electrochem.Soc.,2006,153(2):A329.
  • 8[8]Yamauchi T.,Mizushima K.,Satoh Y.,et al.,Development ofa simulator for both property and safety of a lithium secondary battery.J.Power Sources,2004,136:99.
  • 9[9]Wang Q.S.,Sun J.H.,Yao X.L.,et al.,Thermal stability ofLiPF 6/EC+DEC electrolyte with charged electrodes for lithium ion batteries.Thermochim.Acta,2005,437(1-2):12.
  • 10[10]Ravdel B.,Abraham K.M.,Gitzendanner R.,et al.,Thermal stability of lithium-ion battery electrolytes.J.Power Sources,2003,119-121:805.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部