期刊文献+

基于随机森林的光散射法传感器微站PM_(2.5)监测值的校正方法研究 被引量:1

Research on the correction method of PM_(2.5)monitoring data of light scattering sensor micro-stations based on random forest
原文传递
导出
摘要 光散射法传感器微站以其体积小、反应迅速、成本低等优点,已成为城市PM_(2.5)规模化移动监测的新选择.由于其标准与传统标准台站不同,必须对这类微站的监测数据进行准确地校正.本研究利用2021年06月—2022年02月武汉市江夏区标准台站及同期传感器微站监测数据,探讨传感器微站监测误差与温度、相对湿度的关系,并通过随机森林回归(Random Forest Regressor,RFR)校正传感器微站PM_(2.5)监测数据.对比单一RFR模型、按气象因素分类后RFR模型、“小波去噪+RFR”组合模型、“加权滑动平均去噪+RFR”组合模型校正效果,结果表明:RFR模型和分类后RFR模型均出现泛化能力差的问题,不能满足校正需求;“小波去噪+RFR”组合模型、“加权滑动平均去噪+RFR”组合模型平均绝对误差分别为8.77μg·m^(-3)和4.78μg·m^(-3),平均相对误差分别为40.80%和18.13%.去噪组合模型能满足校正需求,且“加权滑动平均+RFR”组合模型校正效果明显优于“小波去噪+RFR”组合模型.研究结果可为光散射法传感器微站PM_(2.5)监测值校正提供有益参考. Light scattering sensor micro-stations have become a new choice for the large-scale mobile monitoring of PM_(2.5)in cities,mainly by virtue of their small size,rapid response,and low cost.Due to the differences between light scattering sensor micro-stations and traditional stations in monitoring standards,it is necessary to accurately correct the monitoring data of such micro-stations.Relying on the monitoring data of the standard station and micro-station in Jiangxia District,Wuhan from June 2021 to February 2022,this study explored the relationships of the monitoring errors of the sensor micro-station with temperature and relative humidity,and corrected its PM_(2.5)monitoring data using random forest regression(RFR).Then,this study compared the correction effects of the single RFR model,the RFR model based on classification of meteorological factors,the combined model of"wavelet denoising+RFR",and the combined model of"weighted moving average denoising+RFR".The results showed that both the single RFR model and the post-classification RFR model had poor generalization ability,which could not meet the correction requirements.The mean absolute errors of the combined model of"wavelet denoising+RFR"and the combined model of"weighted moving average denoising+RFR"were 8.77μg·m^(-3) and 4.78μg·m^(-3),respectively.In addition,their mean relative errors were 40.80% and 18.13%,respectively.The denoising combination model can meet correction requirements.The correction effect of the"weighted moving average+RFR"combination model was obviously superior to that of the"wavelet denoising+RFR"combination model.The results provide useful references for correcting the PM_(2.5)monitoring data of light scattering sensor micro-stations.
作者 宋金文 何报寅 胡柯 万祎 符祖文 冯奇 杨帆 SONG Jinwen;HE Baoyin;HU Ke;WAN Yi;FU Zuwen;FENG Qi;YANG Fan(Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071;University of Chinese Academy of Sciences,Beijing 100049;Wuhan Environment Monitoring Center,Wuhan 430015;Wuhan Municipal Ecology and Environment Bureau,Wuhan 430022;Wuhan Ecological Environment Bureau Dongxihu District Branch,Wuhan 430040)
出处 《环境科学学报》 CAS CSCD 北大核心 2022年第11期330-338,共9页 Acta Scientiae Circumstantiae
基金 湖北省重点研发计划项目(No.2020BCB074) 中国科学院精密测量科学与技术创新研究院多学科交叉培育项目(No.S21S7102)。
关键词 PM_(2.5) 数据校正 光散射法 随机森林 去噪 PM_(2.5) data correction light scattering Random forest denoising
  • 相关文献

参考文献24

二级参考文献202

共引文献386

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部