期刊文献+

采用注意力DBN-GRU的滚动轴承剩余寿命预测方法 被引量:2

Method of Predicting Remaining Useful Life of Rolling Bearing Adopting Attention Mechanism DBN-GRU
下载PDF
导出
摘要 针对滚动轴承剩余寿命预测中特征提取困难以及预测精度低等问题,提出一种引入注意力机制的深度置信网络(DBN)和门控循环单元(GRU)组合方法用于滚动轴承寿命预测。首先利用Nadam优化器改进DBN网络,直接从原始数据中挖掘出深度特征;其次将注意力机制引入改进DBN中对深度特征进行权重分配形成全局特征;最后通过GRU网络进行寿命预测试验。结果表明,所提方法的预测结果均方根误差和平均相对误差分别比ADBN-LSTM、DBN-GRU、DBN-LSTM和DBN-BP平均低36.81%和34.15%,预测寿命的准确率更高,为滚动轴承健康管理提供了实际价值。 Aiming at the difficulty of feature extraction and low prediction accuracy in predicting remaining life of rolling bearings,a combined method of attention mechanism deep belief network(DBN)and gated recurrent unit(GRU)was proposed to apply to predict remaining life of rolling bearing.Firstly,the Nadam optimizer is used to improve the DBN network,and the deep features are directly mined from the original data;Secondly,the attention mechanism is introduced into the improved DBN to distribute the weight of deep features to form global features;Finally,and the life prediction experiment is carried out through GRU network.The results show that the root mean square error and mean relative error of the proposed method are 36.81%and 34.15%lower than those of ADBN-LSTM、DBN-GRU、DBN-LSTM and DBN-BP respectively,and the accuracy of life prediction is higher,which provides practical value for health management of rolling bearing.
作者 吴芮 张守京 慎明俊 WU Rui;ZHANG Shou-jing;SHEN Ming-jun(School of Mechanical and Electrical Engineering,Xi′an Polytechnic University,Xi′an 710600,China)
出处 《组合机床与自动化加工技术》 北大核心 2022年第11期101-105,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家重点研发计划资助项目(2019YFB1707205)。
关键词 滚动轴承 DBN网络 注意力机制 GRU网络 寿命预测 rolling bearing DBN network attention mechanism GRU network life prediction
  • 相关文献

参考文献7

二级参考文献74

  • 1张星辉,康建设,高存明,曹端超,滕红智.基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究[J].振动与冲击,2013,32(15):20-25. 被引量:14
  • 2奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:56
  • 3Yang Y, Yu D, Cheng J. A roller bearing fault diag- nosis method based on EMD energy entropy and ANN [J]. Journal of Sound and Vibration, 2006, 294(1).. 269 -277.
  • 4Shen Z, Chen X, Zhang X, et al. A novel intelligent gear fault diagnosis model based on EMD and multi- classTSVM [J]. Measurement, 2012, 45(1): 30-- 40.
  • 5Li B, Liu P, Hu R, et al. Fuzzy lattice classifier and its application to bearing fault diagnosis [J]. Applied Soft Computing, 2012, 12(6): 1708--1719.
  • 6Zhao C L, Sun X B, Sun S L, et al. Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine [J]. Expert Systems with Applications, 2011, 38(8): 9908 9912.
  • 7Widodo A, Yang B S. Wavelet support vector machine for induction machine fault diagnosis based on transi ent current signal [J]. Expert Systems with Applica- tions, 2008, 35(1): 307- 316.
  • 8Li B, Zhang P, Liu D, et al. Feature extraction for rolling element bearing fault diagnosis utilizing gener- alized S transform and two-dimensional non-negative matrix factorization[J]. Journal of Sound and Vibra- tion, 2011, 330(10): 2388 2399.
  • 9Ocak H, Loparo K A, Discenzo F M. Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling.. A method for bearing prognostics [J]. Journal of Sound and Vibration, 2007, 302(4): 951--961.
  • 10Zen H, Tokuda K, Masuko T, et al. A hidden semi- Markov model-based speech synthesis system [J]. Transactions on Information and Systems, 2007, 90 (5) : 825.

共引文献240

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部