期刊文献+

基于机器学习的典型零件特征加工方案智能决策研究 被引量:3

Research on Intelligent Decision Making Technology of Typical Parts Feature Machining Scheme Based on Machine Learning
下载PDF
导出
摘要 针对目前典型零件特征加工方案决策过程主要依赖工艺人员经验、设计效率低下、加工知识提取与梳理过程比较困难、智能化程度较低等问题,提出一种基于改进蝗虫优化(IGOA)算法改进BP神经网络的特征加工方案智能决策方法:使用改进蝗虫优化(IGOA)算法方法对BP神经网络初始权值和阈值、学习速率以及反馈过程等进行优化,提高了神经网络的训练效率与准确性;通过对神经网络的节点数量、网络层数、学习策略的研究,建立了适应特征加工方案智能决策的IGOA-BP神经网络模型;最后以某船用柴油机上典型零件的历史特征加工方案数据进行实例验证,快速决策并生成了船用柴油机关键部件的特征加工方案结构树,证明了该算法及特征加工方案智能决策方法的可行性和有效性。 Aiming at the characteristics of typical parts processing scheme decision-making process mainly depends on process engineering experience,the design efficiency is low,processing and knowledge extraction and carding process more difficult,intellectualized degree is low,this paper puts forward a kind of based on improved locusts optimization algorithm(IGOA)the characteristics of the improved BP neural network processing scheme of intelligent decision-making method:The improved Locust optimization(IGOA)algorithm was used to optimize the initial weights and thresholds,learning rate and feedback process of BP neural network,which improved the training efficiency and accuracy of neural network.The number of nodes,network layers and learning strategies of neural network were studied,and the IGOA-BP neural network model was established to adapt to the intelligent decision of feature processing scheme.Finally,the historical feature machining scheme data of a typical part of a Marine diesel engine is used to verify the fast decision and generate the feature machining scheme structure tree of the key parts of Marine diesel engine,which proves the feasibility and effectiveness of the algorithm and the intelligent decision method of feature machining scheme.
作者 任涵韬 张胜文 程德俊 方喜峰 官威 李群 REN Han-tao;ZHANG Sheng-wen;CHENG De-jun;FANG Xi-feng;GUAN Wei;LI Qun(School of Mechanical Engineer,Jiangsu University of Science and Technology,Zhenjiang 212003,China)
出处 《组合机床与自动化加工技术》 北大核心 2022年第11期106-110,共5页 Modular Machine Tool & Automatic Manufacturing Technique
关键词 改进蝗虫算法 智能决策 IGOA-BP神经网络 improved locust algorithm intelligent decision of feature machining scheme IGOA-BP neural network
  • 相关文献

参考文献10

二级参考文献79

共引文献90

同被引文献39

引证文献3

  • 1张小康,肖本贤,马正祥,杨晓俊.改进蝗虫优化-弱匹配追踪算法的WSN目标定位[J].仪表技术,2022(4):37-42. 被引量:1
  • 2张霄.优化设计 创新教育——“双减”背景下小学语文单元作业设计要点[J].小学生(多元智能大王),2022(9):109-111. 被引量:9
  • 3斯万希尔杜·托瓦尔德斯多蒂尔,罗尼·帕茨,刘晓宇(译),王伊(审校).解释联合国系统年度报告中的情绪变化:以联合国难民署、联合国近东救济工程处和国际移民组织的纵向比较为例[J].国际行政科学评论(中文版),2021(4):115-135. 被引量:2
  • 4张丹燕.例谈Recycle板块在小学英语复习教学中的应用[J].英语学习,2022(11):29-33.
  • 5Hiran A.Ariyawansa,Kevin D.Hyde,Subashini C.Jayasiri,Bart Buyck,K.W.Thilini Chethana,Dong Qin Dai,Yu Cheng Dai,Dinushani A.Daranagama,Ruvishika S.Jayawardena,Robert Lücking,Masoomeh Ghobad-Nejhad,Tuula Niskanen,Kasun M.Thambugala,Kerstin Voigt,Rui Lin Zhao,Guo-Jie Li,Mingkwan Doilom,Saranyaphat Boonmee,Zhu L.Yang,Qing Cai,Yang-Yang Cui,Ali H.Bahkali,Jie Chen,Bao Kai Cui,Jia Jia Chen,Monika C.Dayarathne,Asha J.Dissanayake,Anusha H.Ekanayaka,Akira Hashimoto,Sinang Hongsanan,E.B.Gareth Jones,Ellen Larsson,Wen Jing Li,Qi-Rui Li,Jian Kui Liu,Zong Long Luo,Sajeewa S.N.Maharachchikumbura,Ausana Mapook,Eric H.C.McKenzie,Chada Norphanphoun,Sirinapa Konta,Ka Lai Pang,Rekhani H.Perera,Rungtiwa Phookamsak,Chayanard Phukhamsakda,Umpava Pinruan,Emile Randrianjohany,Chonticha Singtripop,Kazuaki Tanaka,Cheng Ming Tian,Saowaluck Tibpromma,Mohamed A.Abdel-Wahab,Dhanushka N.Wanasinghe,Nalin N.Wijayawardene,Jin-Feng Zhang,Huang Zhang,Faten A.Abdel-Aziz,Mats Wedin,Martin Westberg,Joseph F.Ammirati,Timur S.Bulgakov,Diogo X.Lima,Tony M.Callaghan,Philipp Callac,Cheng-Hao Chang,Luis F.Coca,Manuela Dal-Forno,Veronika Dollhofer,Kateřina Fliegerová,Katrin Greiner,Gareth W.Griffith,Hsiao-Man Ho,Valerie Hofstetter,Rajesh Jeewon,Ji Chuan Kang,Ting-Chi Wen,Paul M.Kirk,Ilkka Kytövuori,James D.Lawrey,Jia Xing,Hong Li,Zou Yi Liu,Xing Zhong Liu,Kare Liimatainen,H.Thorsten Lumbsch,Misato Matsumura,Bibiana Moncada,Salilaporn Nuankaew,Sittiporn Parnmen,AndréL.C.M.de Azevedo Santiago,Sujinda Sommai,Yu Song,Carlos A.F.de Souza,Cristina M.de Souza-Motta,Hong Yan Su,Satinee Suetrong,Yong Wang,Syuan-Fong Wei,Ting Chi Wen,Hai Sheng Yuan,Li Wei Zhou,Martina Réblová,Jacques Fournier,Erio Camporesi,J.Jennifer Luangsa-ard,Kanoksri Tasanathai,Artit Khonsanit,Donnaya Thanakitpipattana,Sayanh Somrithipol,Paul Diederich,Ana M.Millanes,Ralph S.Common,Marc Stadler,Ji Ye Yan,XingHong Li,Hye Won Lee,Thi T.T.Nguyen,Hyang Burm Lee,Eliseo Battistin,Orlando Marsico,Alfredo Vizzini,Jordi Vila,Enrico Ercole,Ursula Eberhardt,Giampaolo Simonini,Hua-An Wen,Xin-Hua Chen,Otto Miettinen,Viacheslav Spirin,Hernawati.Fungal diversity notes 111-252-taxonomic and phylogenetic contributions to fungal taxa[J].Fungal Diversity,2015(6):27-274. 被引量:10
  • 6彭广伟,孙佳,赵西梅,房颖,夏江宝.地下水矿化度对柽柳根系生长及构型的影响[J].西南林业大学学报(自然科学),2022,42(5):64-70. 被引量:3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部