期刊文献+

基于跨层双线性池化的糖尿病视网膜病变分级算法研究 被引量:2

Research on grading algorithm of diabetic retinopathy based on cross-layer bilinear pooling
原文传递
导出
摘要 针对糖尿病视网膜病变(DR)分级任务中不同种类之间差异性微小特点,提出一种基于跨层双线性池化(CHBP)的视网膜病变分级算法。首先根据霍夫圆变换(HCT)对输入图像进行裁剪,再使用预处理方法提升图像对比度;然后以挤压激励分组残差网络(SEResNeXt)作为模型的主干,引入跨层双线性池化模块进行分类;最后在训练过程中引入随机拼图生成器进行渐进训练,并采用中心损失(CL)和焦点损失(FL)方法进一步提升最终分类效果。实验结果显示,本文方法在印度糖尿病视网膜病变图像数据集(IDRiD)中二次加权卡帕系数(QWK)为90.84%,在梅西多数据集(Messidor-2)中受试者工作特征曲线下的面积(AUC)为88.54%。实验证明,本文提出的算法在糖尿病视网膜病变分级领域具有一定应用价值。 Considering the small differences between different types in the diabetic retinopathy(DR) grading task, a retinopathy grading algorithm based on cross-layer bilinear pooling is proposed. Firstly, the input image is cropped according to the Hough circle transform(HCT), and then the image contrast is improved by the preprocessing method;then the squeeze excitation group residual network(SEResNeXt) is used as the backbone of the model, and a cross-layer bilinear pooling module is introduced for classification. Finally, a random puzzle generator is introduced in the training process for progressive training, and the center loss(CL) and focal loss(FL) methods are used to further improve the effect of the final classification. The quadratic weighted Kappa(QWK) is 90.84% in the Indian Diabetic Retinopathy Image Dataset(IDRiD), and the area under the receiver operating characteristic curve(AUC) in the Messidor-2 dataset(Messidor-2) is 88.54%. Experiments show that the algorithm proposed in this paper has a certain application value in the field of diabetic retina grading.
作者 梁礼明 彭仁杰 冯骏 尹江 LIANG Liming;PENG Renjie;FENG Jun;YIN Jiang(School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,P.R.China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2022年第5期928-936,共9页 Journal of Biomedical Engineering
基金 国家自然科学基金(51365017,61463018) 江西省自然科学基金面上项目(20192BAB205084) 江西省教育厅科学技术研究重点项目(GJJ170491)。
关键词 跨层双线性池化 视网膜病变分级 随机拼图生成器 渐进训练 中心损失 Cross-layer bilinear pooling Retinopathy grade Random puzzle generator Progressive training Center loss
  • 相关文献

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部